DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

SYLLABUS BACHELOR OF TECHNOLOGY

in

ELECTRONICS ENGINEERING

(VLSI DESIGN & TECHNOLOGY)

[Effective from Admitted batch 2024 and Admitted batch 2023 (3rd Semester) Onwards]

Vision, Mission and Objective of University

VISION

Global Leadership in Human Development, Excellence in Education and Healthcare.

MISSION

Develop professionals of excellent technical calibre in the field of Health Sciences, Engineering, Management and Social Sciences with a humane approach capable of shouldering the responsibility of building the nation and be globally competent.

OBJECTIVES

- To support, promote and undertake the advancement of academics
- To promote use of ICT and modern education technologies
- To encourage research, creation and dissemination of knowledge
- To facilitate extension and community service
- To empower people of Sikkim and contribute to human development in Northeast
- To create environmental and social responsibilities among students and employees
- To ensure steady growth of the University

Vision, Mission and Objective of Institute

VISION

• To achieve eminence in the field of quality technological education and research.

MISSION

• To develop SMIT into an Institution of Excellence capable of producing competent techno-managers who can contribute effectively to the advancement of the society.

OBJECTIVES

- To provide wholesome education to meet the intellectual aspirations of the students.
- To equip students with techno-managerial skills to enable them to take their assigned role in the industry.
- To inculcate essential ethics and values to meet the spiritual needs to the students.
- To provide a sound institutional environment nurturing emotional strength, healthy mind, body and resilience amongst the students.

Vision, Mission and Objective of the Department

VISION

To achieve eminence in the field of quality techno-logical education and research in Communication, Remote Sensing, VLSI & Embedded System and other Electronics related fields.

MISSION

To develop into a department of excellence capable of producing competent techno-managers who can contribute effectively to the advancement of the society.

OBJECTIVES

- To prepare students to identify, formulate and solve real life and industrial problems with their knowledge of electronics and communication engineering.
- To develop techno-managerial ability to execute assigned responsibilities.
- To provide the guidance to develop moral and ethical attitudes.
- To provide education to adopt novel technologies towards the betterment of human life and society.

Program Outcomes

Page 4 of 175

PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO 4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9 Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long.

Program Specific Outcomes

PSO 1 The ability to understand, analyze, design and demonstrate the knowledge of electronic circuits, devices, signal processing, radio and communication engineering in terms of real-world problems to meet the challenges of the future in multi-disciplinary domain.

PSO 2 Ability to pursue project-based learning to qualify for employment, higher-studies and research works in Electronics and communication engineering with ethical values.

Table of ContentsPa				
Chapter 1	SCHEME OF STUDY (B.TECH UNDER CGPA SCHEME) 8		
Chapter 2	ECE Subjects offered to first year	15		
Chapter 3	Major Theory Subjects	17		
Chapter 4	Major Practical Subjects	51		
Chapter 5	Program Electives	69		
Chapter 6	Open Electives	118		
Chapter 7	Choice based Electives	173		
	Consent of BOS	174		

FIRST YEAR B. TECH CURRICULUM 2024 (Common to all branches)

er	FI	RST SEMESTER					SECC	OND SEMESTER				
Semest	Sub. Code	Subject Name	L	Т	Р	С	Sub. Code	Subject Name	L	Т	Р	С
	PH101A1	Engineering Physics	3	1	0	4	CH101A1	Engineering Chemistry	3	1	0	4
1 st Yr	MA101A1	Engineering Mathematics–I/II	3	1	0	4	CS101A1	Computer Programming in C	3	1	0	4
	EC101A1	Basic Electronics	3	0	0	3	MA102A1	Engineering Mathematics–I/II	3	1	0	4
	CE101A1	Elements of Civil Engineering	3	0	0	3	EE101A1	Element of Electrical Engineering	3	0	0	3
	ME101A1	Engineering Graphics	2	0	0	2	ME102A1	Element of Mechanical Engineering	3	0	0	3
	ME101A4	Workshop Practice	0	0	1	1	CH102A1	Environmental Science*	1	0	0	1
	BA101A1	Communication Skills*	2	0	0	2	CS101A4	Computer Programming Lab	0	0	1	1
	BP101A1	Constitution of India	1	0	0	1	CH101A4	Engineering Chemistry Lab	0	0	1	1
	PH101A4	Engineering Physics Lab	0	0	1	1		NCC (AU)	0	0	0	0
		NCC (AU)	0	0	0	0						
	Total Conta	ct Hours $(L + T + P)$				21	Total Contac	ct Hours $(L + T + P)$				21
	*Mandatory	audit course					*Mandatory audit course					

Note: UHV–I has been introduced under Mandatory Induction Program.

	THIRD SEMESTER								
Year	Course	Course Title	Tota	Total Number of Contact Hours					
	Code		Lecture (L)	Tutorial (T)	Practica l (P)	Total Hours			
	MA207A1	Engineering Mathematics III	3	1	0	4	4		
	VT201A1	Electronic Devices and Components	3	1	0	4	4		
	VT202A1	Digital Electronics and System Design	3	1	0	4	4		
	VT203A1	Signals and Systems	3	1	0	4	4		
2nd	VT2xxA3	Program Elective-I	3	1	0	4	4		
	VT2xxA2	Open Elective-I/Minor/NCC	3	1	0	4	4		
	VT201A4	Electronic Devices and Components Lab	0	0	1	2	1		
	VT202A4	Digital Electronics and System Design Lab	0	0	1	2	1		
	VT201A5	Project Based Learning-I	0	0	1	2	1		
TOTAL			18	6	3	30	27		

B.TECH. COURSE STRUCTURE – SEMESTER WISE

	FOURTH SEMESTER							
Year	Course	Course Title	Tota	Total Number of Contact Hours				
	Code		Lecture (L)	Tutorial (T)	Practical (P)	Total Hours		
	MA208A1	Engineering Mathematics IV	3	1	0	4	4	
	VT204A1	Analog Electronic Circuits	3	1	0	4	4	
	VT205A1	Microprocessor, Microcontroller, and ARM processor	3	1	0	4	4	
	VT2xxA2	Open Elective-II/Minor/NCC	3	1	0	4	4	
2nd	VT2xxA3	Program Elective-II	3	1	0	4	4	
	GN201A1	Universal human values-II: understanding Harmony and ethical human conduct	3	0	0	3	3	
	VT203A4	Analog Electronic Circuits Lab	0	0	1	2	1	
	VT204A4	Microprocessor and microcontroller LAB	0	0	1	2	1	
	VT202A5	Project Based Learning-II	0	0	1	2	1	
TOTAI			18	5	3	29	26	

FIFTH SEMESTER								
Year	Course Code	Course Title	Tota	l Number	Hours Credits			
			Lecture	Tutorial	Practical	Total		
			(L)	(T)	(P)	Hours		
	VT301A1	Communication Engineering	3	1	0	4	4	
	VT302A1	Introduction to Microfabrication	3	1	0	4	4	
	VT303A1	VLSI Verification and Testing using EDA tools	3	1	0	4	4	
	VT304A1	Embedded System	3	1	0	4	4	
3 rd	VT3xxA3	Program Elective-III/MOOC	3	3	0	4	3	
	VT3xxA2	Open Elective-III/Minor/NCC	3	1	0	4	4	
	VT301A4	HDL simulation LAB	0	0	1	2	1	
	VT302A4	Python Scripting Lab	0	0	1	2	1	
	VT301A5	Project Based Learning-III	0	0	1	2	1	
	GN301A1	Quantitative aptitude and logical reasoning	1	0	0	1	1	
	VT301A9	Industrial Training-I	0	0	1	-	1	
TOTAI	_		18	6	4	30*	28	

		SIXTH SEM	MESTER					
Year	Course	Course Title	Tota	Total Number of Contact Hours				
	Code		Lecture	Tutorial	Practical	Total		
			(L)	(T)	(P)	Hours		
	BA346A1	Industrial Management	2	0	0	2	2	
	VT305A1	Semiconductor Materials Synthesis and Characterization	3	1	0	4	4	
	VT306A1	Micro Electronics and VLSI Design)	3	1	0	4	4	
	VT3xxA3	Program Elective-IV	3	1	0	4	4	
	VT3xxA3	Program Elective-V	3	1	0	4	4	
3rd	VT3xxA2	Open Elective-IV/Minor/NCC	3	1	0	4	4	
	VT303A4	Communication Lab	0	0	1	2	1	
	VT304A4	ARM based SoC Design Lab {Foundry Familiarization workshop / MOOC virtual Lab}	0	0	1	2	1	
	GN302A1	Quantitative aptitude and logical reasoning	1	0	0	1	1	
	VT302A5	Mini Project	0	0	1	1	1	
ΤΟΤΑΙ			17	5	4	28	26	

*Audit course

		SEVENTH S	EMESTER					
Year	Course	Course Title	Total	Number of	f Contact H	lours	Credits	
	Code		Lecture (L)	Tutorial (T)	Practical (P)	Total Hours		
	VT4xxA2	Open Elective-V/Minor/NCC	3	1	0	4	4	
,th	VT4xxA2	Choice Based Elective (Open Elective)	3	0	0	3	3	
4 ^{u1}	VT401A6	Research based Project / Industrial Project -Phase-I	0	0	7	2	7	
	VT401A9	Industrial Training-II	0	0	1	-	1	
TOTAL		·	6	1	1	9*	15	
		EIGHT SEM	MESTER					
Year	Course	Course Title	Total Number of Contact Hours Credits					
	Code		Lecture	Tutorial	Practical	Total		
			(L)	(T)	(P)	Hours		
4 th	VT4xxA2	Open Elective-VI/Minor/NCC	3	1	0	4	4	
	VT402A6	Major Project work	0	0	12	-	12	
TOTAL			3	1	12	4*	16	

	LIST OF ELECTIVES FOR 3 ^{rd.} SEMESTER						
		PROGRAM ELECTIVE-1					
Year	COURSE	COURSE TITLE	CREDIT				
	CODE						
	VT201A3	Electromagnetic Theory	4				
	VT202A3	Network Analysis and Synthesis	4				
2nd	VT203A3	OOPs with C++	4				
	VT204A3	Internet of Things	4				
	VT205A3	Computer Organization and Architecture	4				

	LIST OF ELECTIVES FOR 4 TH SEMESTER						
		PROGRAM ELECTIVE-2					
Year	COURSE	COURSE TITLE	CREDIT				
	CODE						
	VT206A3		4				
		Computer Networks					
2nd	VT207A3		4				
		Electronic Instruments and Measurements					
	VT208A3		4				
		Data Structure					
	VT209A3		4				
		Advanced Electronic Devices					

	LIST	OF ELECTIVES FOR 5 TH SEMESTER	
		PROGRAM ELECTIVE-3	
Year	COURSE	COURSE TITLE	CREDIT
	CODE		
	VT301A3	FPGA Architecture	4
	VT302A3	Digital Signal Processing	4
3rd	VT303A3	VLSI Physical Design	4
	VT304A3	JAVA	4
	VT305A3	Database Management System	4

	L	IST OF ELECTIVES FOR 6 TH SEMESTER						
	PROGRAM ELECTIVE-4							
Year	COURSE CODE	COURSE TITLE	CREDIT					
	VT306A3	Advanced Semiconductor Devices and Flexible Electronics	4					
	VT307A3	Linear and Digital Control Systems	4					
	VT308A3	Information Theory and Coding	4					
	VT309A3	MEMS and NEMS	4					
		PROGRAM ELECTIVE-5	·					
3rd	VT310A3	Advance VLSI and SoC Design	4					
	VT311A3	Semiconductor Device Modelling	4					
	VT312A3	Machine Learning	4					

OPEN ELECTIVE/MINOR							
SEMESTER	COURSE CODE	COURSE TITLE	CREDIT				
	VT201A2	Introduction to Complex Variables	4				
3rd	VT202A2	Computer Organization and Architecture	4				
	VT203A2	Python Programming	4				
	VT204A2	Mathematics for Communication Engineering					
	VT205A2	Signal Processing for Communication	4				
th	VT206A2	Semiconductor Devices and Circuits	4				
401	VT207A2	Sensors and Actuators	4				
	VT208A2	Advanced Antenna Design					
	VT301A2	Optimization Technique	4				
5th	VT302A2	Solid State Devices	4				
	VT303A2	IOT Gateways and Edge Computing	4				
	VT304A2	Advanced Digital Communication					
	VT305A2	Pattern Recognition	4				
	VT306A2	Nano Electronic Devices and Materials	4				

6th	VT307A2	Communication Pathways between Cloud and IoT	4
	VT308A2	Modern Wireless Communication System	
	VT401A2	Time Frequency Analysis	4
	VT402A2	Adv. VLSI Design and Applications	4
7th	VT403A2	Artificial Intelligence and Machine Learning	4
	VT404A2	Coding for MIMO Communication	
	VT405A2	Advance Digital Signal Processing	4
8th	VT406A2	ASIC Design	4
	VT407A2	Data Centre and Cloud Computing	4
	VT408A2	5G Mobile Communication	

	CHOICE BASED ELECTIVES/OPEN ELECTIVES				
SEMESTER	COURSE CODE	COURSE TITLE	CREDIT		
7th	VT4xxA2	Any subjects related to foreign language or Indian language.	3		

BASIC ELECTRONICS

Questions to be set: 05 (All Compulsory)

Course Objectives: This course provides the student with the fundamental skills to understand the basic of semiconductor and components like diode and Bipolar Junction Transistor. It will give some idea about the usages and role of electronics in our daily lives. Students will learn basics of digital electronics in this course. Students will be introduced with the basics of a communication system.

Pre-requisites: Basics of semiconductor Physics

Course Outcomes (CO):

After studying this course, students will be able to:

- 1. Appreciate the significance of electronics in different areas
- 2. Apply the concept of diodes in rectifiers, voltage regulators and in some other applications
- 3. Understand the operation of a transistor and its biasing techniques
- 4. Compile the different building blocks in digital electronics using logic gates and implement simple logic function using logic gates
- 5. Understand the functioning of a communication system
- ** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	in	Electronics in our daily life, Role of electronics in smart city,	6	1
Introduction to Electronics	class	Application of electronics in computers, Introduction to special purpose diodes: Photo diode, Tunnel diode, Varactor diode, Light Emitting Diode, Schottky diode		
	**Assignment Topics			
Module 2:	in	p-n junction diode, Characteristics and Parameters, Diode	8	2
Semiconductor Diodes and	class	approximations, Half-wave rectifier, Full-wave rectifier - Centre tap rectifier, Bridge rectifier, Zener diode as voltage regulator,		
Applications	**Assignment			
	Topics			
Module 3:	in	Operation of Bipolar Junction Transistors, Regions of operation of	8	3
Introduction to Bipolar Junction Transistor	class	BJT, Transistor configurations - Common Base, Common Emitter and Common Collector Characteristics, BJT Biasing - Operating point, DC Load line, ac load line, Fixed bias, Base Resistor bias, Collector to Base bias, Voltage divider Bias		
	**Assignment			
	Topics			
Module 4: Introduction to Digital Electronics	in class	Analog versus Digital electronics, Binary System for digital electronics, Introduction to basic and composite logic gates, realization of a Boolean expression using logic gates, examples of small digital circuits - adder, comparator etc., Introduction to IC	8	4
	·····································	technologies		
	Topics	ics & Commun		

Module 5:	in class	Application of electronics in Communication Systems, 1G to 6G,	6	5
Basics of		Introduction to IoT.		
Communication	**Assignment	Basics of internet		5
System	Topics			

TEXTBOOKS:

- 1. Millman and Halkias, Integrated devices & Circuits (2e), PHI, 2017
- 2. Robert L. Boylestad, Louis Nashelsky, Electronic Devices & Circuit Theory (11e), PHI 2012
- 3. Malvino and Leach, Digital Principles & applications (7e), TMH 2010
- 4. George Kennedy, Bernad Davis., Electronic Communication Systems, (4e), TMH, 2004
- 5. Garcia, Widjaja, Communication Networks, McGraw Hill 2006

REFERENCE BOOKS:

- 1. Electronics Devices and Circuits-II by A. P. Godre& U. A. Bakshi
- 2. Electronics Devices and Circuit by G. K. Mithal
- 3. Raj Pandya, Mobile and Personal Communication Services and Systems, Wiley-IEEE Press, 1999

Third Semester Major Theory Subjects

Page 17 of 175

ENGINEERING MATHEMATICS III

Questions to be set: 05 (All Compulsory)

Course Objectives: The objective of this paper is to give emphasis on topics like Partial Differential equations (PDE) and Numerical Methods. Linear algebra plays a major role in helping design and analyze electronic circuits. PDE is required for the study of motion, vibrating strings etc. Many real-life problems arising in communication can be modeled by numerical techniques. In many problems analytical solutions are not readily available or not easy to obtain. Therefore, numerical methods are helpful to solve. Linear Algebra plays a pivotal role in many engineering branches, especially electronics and communication engineering and hence they will enable students to model their problems using matrix theory.

Pre-requisites: Engineering Mathematics-I, Engineering Mathematics-II

Course Outcomes (CO): On successful completion of this course students will be able to:

CO 1: Identify and apply the concepts of vector space in various problems of communications. CO 2: Associate and apply the concept of linear transformation in various engineering problems of networks and communications.

CO 3: Formulate and apply the concept of partial differential equation in electronics engineering modeling.

CO 4: Analysis and apply the concepts of numerical methods in solving engineering problems numerically.

CO 5: Apply the concepts of initial value problems to find approximate solutions for engineering problems numerically.

Module	Topics to be covered	Topics	Hrs	CO
Module 1: <vector and<="" space="" td=""><td>in class</td><td>Linear Algebra: Vector Spaces, Subspaces, Span, Basis and Dimension, Linear Transformation, Matrix representation of</td><td>8</td><td>1</td></vector>	in class	Linear Algebra: Vector Spaces, Subspaces, Span, Basis and Dimension, Linear Transformation, Matrix representation of	8	1
Linear Transformation>	**Assignment Topics	Eigen Values and Eigen Vectors.	1	1
Module 2: <inner product<="" td=""><td>in class</td><td>Inner product spaces, Orthogonality, projection, Orthogonal and Ortho normal Basis, Gram Schmidt Orthogonalization Process.</td><td>8</td><td>2</td></inner>	in class	Inner product spaces, Orthogonality, projection, Orthogonal and Ortho normal Basis, Gram Schmidt Orthogonalization Process.	8	2
Space and Orthogonalization>	**Assignment Topics	Gram Schmidt Orthogonalization Process.	1	2
Module 3: <partial Differential Equation></partial 	in class	Partial differential equations: Definition, degree, order of a PDE. Formation of PDE. Linear and nonlinear PDE. Solution of first order linear PDE. Derivations of one dimensional wave equation (vibrating string) and its solutions by using method of separation of variables with simple problems.	10	3
	**Assignment Topics	Method of separation of variables.	1	3

** not more than 20% of total topics to be allotted for assignment

SMIT

Module 4: <numerical Methods-I></numerical 	in class	Numerical Methods: Interpolation and application: finite difference, central and divided differences, Newton - Gregory and Lagrange's interpolation formulae. Inverse interpolation. Numerical differentiation. Numerical integration: Trapezoidal rule, Simpson's one third and three eight rule, Solution of systems of linear equation: Jacobi, Gauss-Seidal methods. Solution of tridiagonal systems. Eigenvalues and eigenvectors of matrices and elementary properties, computation of largest eigenvalue by power method.	10	4
	**Assignment Topics	Solution of systems of linear equations by Jacobi method and Gauss-Seidal method.	1	4
Module 5: < Numerical Methods-II>	in class	Numerical solution of algebraic and transcendental equations using Newton Rapson's method, Solution of nonlinear equation by Newton Raphson's method, Numerical solution of initial value problems in ordinary differential equations by Taylor series method, Runge-Kutta Fourth order Method.	7	5
	**Assignment Topics	Runge-Kutta Fourth order Method.	1	5

Text Books:

- 1. Erwin Kreyszig : Advanced Engineering Mathematics, Wiley.
- 2. S. S. Sastry: Introductory Method Numerical Analysis. PHI.
- 3. I. Sneddon, Elements of Partial Differential Equations, Dover Publications INC.

Reference Books:

1. M. K. Jain and S.R.K. Iyengar and R. K. Jain: Numerical methods for scientific and engineering computations. New Age International.

2. Conte and deBoor: Elementary Numerical Methods, an algorithmic approach, McGraw Hill.

VT201A1

ELECTRONIC DEVICES & COMPONENTS

Questions to be set: 05 (All Compulsory)

Course Objectives:

- i. To gain insight to the world of Device Electronics
- ii. To gain idea about device circuit interaction
- iii. To learn about the various biasing techniques which assist in improving system performance

Pre-requisites: Basic Electronics, Engineering Physics.

Course Outcomes (CO): Students should be able to

- 1. Comprehend the fundamentals of Semiconductor Physics.
- 2. Insight of P-N Junction diodes and different types of contacts.
- **3.** Apply the knowledge of Bipolar Junction Transistors (BJT) characteristics and implementation on electronic circuit design.
- 4. Design different transistor amplifier circuits.

ION EN

SMIT

of Elec

5. Apply the knowledge of Field Effect Transistor (FET) characteristics and implementation on electronic circuit design.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Semiconductor Fundamentals	in class	Crystal structure, Fermi level, energy-band diagram, intrinsic and extrinsic semiconductor, carrier concentration, scattering and drift of electrons and holes, diffusion mechanism, Hall effect, generation, recombination and injection of carriers.	9	1
	**Assignment Topics	Numericals on Drift Velocity, Mass-Action Law, Hall-Effect.		1
Module 2: PN Junctions & Semiconductor Contacts	in class	Metal-semiconductor junction: Ohmic and Schottky Contacts. Biasing, forward and reverse characteristics, I- V characteristics, Zener diode, Photodiode, Light Emitting Diode, Solar Cells, Diode as a switch, rectifier, regulator, clipper, clamper circuits.	9	2
	**Assignment Topics	Numericals on Diode Equation, Experimental Observation of LED, Solar Cell Efficiency Measurement.		2
Module 3: Bipolar Junction	in class	Introduction, CE, CB, CC configurations, region of operation, biasing, Graphical analysis (DC and AC load line), Biasing and Stabilization of Q- point.	8	3
Transistor (BJT)	**Assignment Topics	Numericals on Transistor relations among different configurations, viz. α , β and γ .		3
Module 4: Transistor As An Amplifier	in class	Multistage amplifiers-gain calculation. RC Coupled Amplifiers- functions of all components, equivalent circuit and derivation of voltage gain, frequency	10	4
oni	cs & Communic	Page 20	of 175	

		response characteristics, lower and upper half frequencies, bandwidth. Distortion in Amplifiers. Darlington Amplifiers.	
	**Assignment Topics	Numericals on gain, frequency, and bandwidth calculations of the amplifier.	4
Module 5: Field Effect Transistors (FET)	in class	JFET and its principle of operation. Static characteristics 12 of JFET. Concept of pinch off voltage. Metal insulator semiconductor junction. Accumulation, Depletion and Inversion, Enhancement and Depletion type MOSFET. Static characteristics of MOSFET. MOSFET as amplifier.	5
	**Assignment Topics	Numericals on FET Transconductance expression, pinch-off voltage calculation.	5

Text-Books:

- **1.** Ben Streetman and Sanjay Banerjee, Solid State Electronic Devices, 7e, Prentice-Hall, 2015.
- **2.** Donald A. Neamen, Semiconductor Physics And Devices: Basic Principles, 4e, Tata McGraw-Hill Pvt. Ltd., 2012.
- **3.** Millman J and Halkias, Integrated Electronics, 2e, McGraw Hill Education (India) Pvt.Ltd, 2009.

Reference Books:

- **1.** D Chattopadhyay and P.C. Rakshit, Electronics Fundamentals and Applications, 1e, New Age International Publications, 2008.
- **2.** Boylestead and Nashelsky, Electronic Devices and Circuits Theory: 11e, Prentice-Hall, India, 2012.
- 3. J. Milman and A. Grabel, Microelectronics, 1e, Tata McGraw-Hill Education, 2001.

Digital Electronics and System Design

Questions to be set: 05 (All Compulsory)

Course Objective: To introduce the students with the Digital Electronics and designing of combinational and Sequential circuits. In this subject, students are introduced with digital electronics and the various design methodologies of combinational logic circuits. Brief about Number systems with special emphasis on binary system are encompassed in the subject. In this subject, students learn how to design logic circuits like adder, subtractor, code converters, multiplexers, decoders etc. Students are also introduced to sequential digital circuits.

Pre-requisites: Basics of number systems, Basics of electronics.

Course Outcomes (CO): On Successful Completion of the course, students will be able to

- CO STATEMENT
- **CO1** Analyze combinational logic circuits for practical applications.
- **CO2** Explain the internal circuits of various logic family ICs.
- CO3 Analyze sequential logic circuit using flip-flop.
- CO4 Analyze synchronous sequential machine for practical applications.
- CO5 Describe the basics of semiconductors memories.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Codes in Binary system & Combinational logic circuits	in class	BCD code, Excess 3 code, gray code, Boolean algebra, Forms of Expressions SOP, Universal Logic gates, Introduction to K- map, Design of combinational logic circuits: adder, subtractor, Code Converters, Quine-Mc-Cluskey method, Comparators, Parity generator. Concept of fan-in and fan-out of logic cells.	10	1
design:	**Assignment Topics	Number Systems, POS		
Module 2: MSI Combinational circuit & Logic families:	in class	Quine-Mc-Cluskey method, Multiplexers, Demultiplexers, Encoders, Decoders Look Ahead Carry Adder. Logic families: Introduction to logic families, Characteristics of digital ICs, Interfacing of TTL and CMOS. Circuits of TTL family logic gates	8	2
Module 3: Introduction to sequential logic and Counter dosign:	In Class	Need for sequential circuits. Latches and flip-flops. Circuits and characteristics RS, JK, Master-Slave JK, D & T flip flops. Conversion of Flip flops. Design of synchronous, asynchronous and hybrid counters, programmable counter, Ring counter, Shift registers	10	3
Module 4:	In Class	Fundamentals of Synchronous sequential circuits, Classification of synchronous machines, Design of	12	4

Page 22 of 175

Design and Analysis of Sequential		Synchronous Sequential circuits - design approaches, state reduction, design of next state decoder and output decoder, ASM charts.
circuits:	**Assignment Topics	Basics of Asynchronous sequential circuit
Module 5: Semiconductor memory and programmable logic devices:	In Class	Read Only Memory (ROM) -PROM, EPROM, EEPROM, 8 5 random access memory (RAM)-static, dynamic, memory characteristics, memory organization and applications. Architecture of PAL, PLA, PLD and their application.

Text Books:

- 1. Morris Mano, "*Digital Logic and Computer Design*, Pearson Education India", 1st Edition, 2016.
- 2. William I. Fletcher, "*An Engineering Approach to Digital Design*", Pearson Education India, 1st Edition, 2015.

Reference Books:

- 1. Ronald J. Tocci, Neal S. Widmer, and Gregory L. Moss, "*Digital Systems: Principles and Applications*", Pearson Education, 11th Edition, 2010.
- 2. R. P. Jain, "*Modern Digital Electronics*", Tata McGraw-Hill Publishing Company Ltd., 3rd Edition, 2006.

SMIT

n of L

Signals and Systems

Questions to be set: 05 (All Compulsory)

Course Objective : To serve as a beginner course in acquiring knowledge in Signals and Systems. This course describes fundamentals of Signals and systems, Fourier series (CTFS), Fourier transform (CTFT), Laplace transform, Z transform and their application areas.

Pre-requisites: Basic Trigonometry, Coordinate geometry and thorough knowledge of: Complex analysis, Integral and differential calculus, Solution of linear differential and difference equation.

Course Outcomes(CO):

- CO1 Students should be able to understand basics of signals and systems and their mathematical representation.
- CO2 Students should be able to interpret spectral analysis of periodic and aperiodic signals using Fourier methods.
- CO3 Students should be able to understand the LTI systems and their effect on signals passing through them in time and frequency domains.
- CO4 Students should be able to apply Laplace transform to continuous-time domain signals/systems for stability analysis.
- CO5 Students should be able to apply Z- transform to discrete-time domain signals/systems for stability analysis.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be	Topics	Hrs	CO
Module 1: Basic Signals, Its Operation and Analysis	in class	Unit step, Unit Impulse and Unit Ramp Functions, Properties of different singularity functions, Classification of signals and their mathematical representations, Basic Operations on Signals: Time shifting, Time scaling, Time reversal. Convolution Integrals and Convolution Sum, Properties of Convolution Integrals and Convolution Sum, Correlation of Signals: Cross correlation and autocorrelation of continuous and discrete time energy and power signals, Properties of cross correlation and autocorrelation. Amplitude and Phase spectra of a signal, Physical significance of the exponential form of Sine and Cosine waveform (Vector diagram), Concept of negative frequency, Introduction of Orthogonal basis functions.	9	1
	**Assignment Topics	Numerical on Signal shifting, scaling, convolution and correlation		
Module 2: Spectral Density and Systems	in class	Energy Spectral Density (ESD), Power Spectral Density (PSD), Properties of ESD and PSD, Relationship between PSD, ESD and the auto correlation function. Introduction to Systems, Classification of continuous and discrete time systems, Mathematical representation of Different types of systems, Linear Time Invariant (LTI) systems, system transfer functions, impulse responses.	9	2
Sonics & Communication	ALLER ALLER	Page 24 of 175		

	**Assignment Topics	Comparison of different type of systems		
Module 3: Fourier Analysis	in class	Fourier Series: Dirichlet conditions, Trigonometric Fourier series, Trigonometric Fourier series coefficients, Symmetry conditions, Polar form and exponential form of Fourier Series, relationship between exponential and trigonometric Fourier series, Gibb's Phenomenon. Fourier Transform: Continuous Time Fourier transform (CTFT), Condition for Fourier Transform, Properties of CTFT, Parseval's theorem, Inverse Fourier Transform using Partial fraction.	10	2
	**Assignment Topics	Numerical on Fourier Series and Transform		
Module 4: Laplace Transform	in class	Laplace Transform: Concept of Complex Frequency, Introduction to Laplace Transform, Concept of poles and zeros, System transfer function, Necessity of Laplace Transform, Unilateral and Bilateral Laplace Transform, Condition for existence of Laplace Transform, Region of convergence (ROC), ROC of finite duration signal, Necessity of Unilateral Laplace Transform, Significance of initial condition, Relationship between poles and ROC, Relationship between Laplace transform and Fourier Transform, Properties of Laplace Transform, initial value theorem, final value theorem, Inverse Laplace Transform using partial fraction method.	10	3
	**Assignment Topics	Numerical on Laplace Transform		
Module 5: Z Transform	in class	Z Transform: Sampling, Discrete signals, Z transform, relation between s – plane and z – plane, Relationship between Fourier, Laplace and Z-Transformation; Properties of ROC, ROC of causal and Anti causal signals, Condition for existence of Z transform, Properties of z-transforms, Shifting theorem, Initial and final value theorem, Inverse – Z transforms using long division method and partial fraction method, Transfer function of delay unit, realization of z-domain transfer function, Solution of difference equations using z-transform.	10	4,5
	**Assignment Topics	Numerical on Laplace and Z Tranform (inverse transforms as well)		

Text Books:

- 1. A.V. Oppenheim, A.S.Willsky, Signals and Systems, 2e, PHI, 1997.
- 2. Robert A. Grabel and Richard A. Roberts, *Signals and Linear System*, 3e, Wiley 2009 **Reference Books:**
 - 1. B.P.Lathi, *Principles of Linear Systems and Signals*, 2e, Oxford University Press, 2009.
 - 2. H P Hsu, Signals and Systems, Schaum Outline Series, 3e, Tata McGraw Hill, 2014.
 - 3. T.K. Rawat, Signals and Systems, 1e, Oxford University Press, 2010.
 - 4. P. Rameshbabu, R. Anandanatarajan, Signals and Systems, 4e, Scitech Publication, 2011.

Fourth Semester Major Theory Subjects

MA208A1

ENGINEERING MATHEMATICS IV

Questions to be set: 05 (All Compulsory)

Course Objectives Objective of teaching Probability is to provide basic foundation on Probability and Random processes (or Stochastic Processes) its applications in the field of Science and Engineering. Random process has enormous applications in Digital Communications & Modeling of physical problems. Complex numbers are applied to study control theory, signal analysis, electromagnetism and electrical engineering etc.

Pre-requisites: Engineering Mathematics I, II, and III.

Course Outcomes (CO): By attending this course, the students will be able to

CO1: Define the concepts of probability, discrete and continuous random variables and apply this knowledge in to different real world situations.

CO2: Apply the concepts of random process and Markov chain which are essentially models of many times dependent processes as a team or individual.

CO3: Students can analyze engineering problems with the solution to the community applying the knowledge of random processes and the concepts of singularity in complex analysis.

CO4: Analyze the properties of analytic functions and use them efficiently.

CO5: Use concepts in Stochastic processes and Complex integrals to apply various problems that arise in Electronics and communication engineering.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	in	Basic concepts on Borel sets and measure, Axiomatic definition,	10	1
<vector and<="" space="" td=""><td>class</td><td>conditional probability and independence, Baye's theorem.</td><td></td><td></td></vector>	class	conditional probability and independence, Baye's theorem.		
Linear				
Transformation>				
Module 2:	in	One and Two dimensional random variables with moments (up	10	2
<inner product<="" td=""><td>class</td><td>to second order), covariance, correlation coefficients.</td><td></td><td></td></inner>	class	to second order), covariance, correlation coefficients.		
Space and		Distributions: Binomial, Poisson, Uniform, Normal, Gamma,		
Orthogonalization>		and Exponential distribution. Central Limit Theorem.		
Module 3:	in	Random Processes: Definitions, Classifications. Auto	8	2,5
<partial< td=""><td>class</td><td>Correlation and Covariance functions, Weak sense and Strong</td><td></td><td></td></partial<>	class	Correlation and Covariance functions, Weak sense and Strong		
Differential		sense stationary processes.		
Equation>				
Module 4:	in class	Discrete Parameter Markov chain: Basic ideas, Computation of	12	3,5
<numerical< td=""><td></td><td>n step transition probabilities using Chapman Kolmogorov</td><td></td><td></td></numerical<>		n step transition probabilities using Chapman Kolmogorov		
Methods-I>		Theorem. (Restricted to two state problems).		
ics & Comme	in in	Page 27 of 1	75	

Complex variables, functions, continuity, differentiability, analyticity -Cauchy Riemann equations and properties of analytic functions.

Line integrals in complex plane and basic properties of Cauchy's Module 5: in class 8 integral theorem and Cauchy's integral formula -derivatives of < Numerical Methods-II> analytic functions. Taylor, Maclaurin and Laurent's series, residue theorem, evaluation of standard real integrals using contour integrals.

Text Books:

1. P.L. Meyer; Introductory Probability theory and statistical Applications, Second Ed. Oxford & IBM Publishers, 1997

2. R. V. Churchill and J. W. Brown : Complex variables and applications, McGraw Hill,

3. K.S. Trivedi : Probability & Statistics with Reliability, Queuing and Computer Science Applications, PHI,

Reference Books:

- 1. Murray R. Spigel : Complex variable, Schaum's Outline Series.
- 2. Erwin Kreyszig : Advanced Engineering Mathematics, Wiley Eastern
- 3. William Feller : Introduction to Probability Theory and its Applications, (Vol I & II) 2008, Wiley

5

VT204A1

Analog Electronics Circuits

Questions to be set: 05 (All Compulsory)

Course Objectives: To enrich the knowledge of the students with a sound understanding of analog electronic circuit, this will help them in the further course of their studies. It exposes the students to various types of analog electronic circuit which will help them to relate this with the other courses which they have in their future semesters, as well as its importance from industrial point of view.

Pre-requisites: Basic idea on Electrical and Electronic Circuits. Engineering Physics.

Course Outcomes (CO):

Jedan *

After successful completion of this course, students will be able to:

CO1: Explain and design different types of feedback amplifiers and Oscillator

CO2: Explain and design different types of power amplifiers

CO3: Explain the working principle of Operational Amplifier and implement the linear and non-linear applications of Operational Amplifier

CO4: Analyze and design different types of filter circuits using OPAMPs

CO5: Explain and design Multivibrators and Special functional circuits

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CC
Module 1: Feedback Amplifiers & Oscillator	in class	Basic principles and types of feedback, feedback topology, derivation of expression for gain, effect of negative feedback in gain, stability, distortion and bandwidth of an amplifier, Barkhaushen criterion, Different oscillator circuits: Wien-Bridge, Hartley, and Crystal.	10	1
	**Assignment Topics	Derivation of expression for frequency of RC Phase Shift and Colpitt Oscillator.		1
Module 2: Power	in class	Class A, B, AB, C, Push-Pull Amplifiers, Tuned Amplifiers.	10	2
Amplifiers	**Assignment Topics	Derivation of Conversion Efficiency of class A, B power amplifier.		2
Module 3: Operational Amplifiers and its applications	in class	Characteristics of an ideal operational amplifier and its block diagram, Differential amplifiers and its characteristics-CMRR, Slew-Rate, Offset Voltage and Current, Gain-Bandwidth Product, Open & Closed loop operation, inverting and non-inverting amplifier, voltage follower, Summing amplifier, Differentiator, Integrator, Comparator, Precision rectifiers, Sample and Hold circuits.	10	3
Storics &	Communication	Page 29 of 17	'5	

	**Assignment Topics	Schmitt trigger, Instrumentation amplifier.		3
Module 4: Active Filters	in class	Design and analysis of first and second order low pass, high pass, band pass, Gain-Frequency Curve.	10	4
	**Assignment Topics	Band reject filters and Notch filters		4
Module 5:	in class	Implementation of Multivibrators using Transistor and 555	8	5
and Special	**Assignment	A-to-D Converter, D-to-A Converter.		5
Functional Circuits	Topics			

Textbooks:

1. Robert L. Boylestad, Louis Nashelsky, *Electronic devices and circuit theory*, Pearson Education, 11th Edition, 2013.

2. Jacob Millman, Christos Halkias, Chetan Parikh, *Integrated Electronics*, McGraw Hill Education, 2nd Edition, Paperback, 2009.

3. RamakantGayakwad, Opamps & Linear Integrated Circuits, PHI, 4th Edition, 2004.

4. V S KanchanaBhaaskaran , Salivahanan, *Linear Integrated Circuits*, Tata Mcgraw Hill Education Private Limited 2nd Edition, 2008.

Reference Books:

1. Donald Schilling, Charles Belove, *Electronic Circuits: Discrete and Integrated*, McGraw Hill Education (India) Private Limited; 3rd Edition, 2002.

2. S Salivahanan, N. Suresh Kumar, *Electronic Devices and Circuit*, McGraw Hill Education (India) Private Limited; 3rd Edition, 2012.

3. D. Chattopadhyay, P.C. Rakshit, *Foundations of Electronics*, New Age International Publishers Ltd., 2nd Edition, 2015.

4. Choudhury D. Roy, Shail B. Jain, *Linear Integrated Circuits*, New Age International Publishers Ltd., 4th Edition, 2010.

5. David A. Bell, *Electronic Devices and Circuits*, Oxford Publications, 5th Edition, 2008.

6. Albert Malvino, David Bates, *Electronic Principles*, McGraw Hill Education (India) Private Limited; 7th Edition, 2006.

VT205A1

Microprocessor, Microcontroller and ARM Processors

Questions to be set: 05 (All Compulsory)

Course Objectives: To provide solid foundation on the fundamentals of microprocessors and microcontrollers and their applications, interfacing the external devices to the processor according to the user requirements thus, enabling to create novel products and solutions for real time problems. The students will also be introduced to basic architecture of ARM Processors

Pre-requisites: Digital Circuits & Logic Design, Basics of PC Hardware and peripherals

Course Outcomes (CO):

After completion of this course, students should be able to

- 1. Learn about the basics of architecture of a microprocessor
- 2. Describe the architectures of 8086 microprocessors
- 3. Know about the architecture of 8051, its interrupts and interfacing applications
- 4. Understand the features of architecture of ARM7 and Applications
- 5. Interpret the exception, interrupts, and interrupt handling schemes

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CC
Module 1: Introduction to 8085	in class	CPU architecture – register organization, 8085 instruction set, addressing modes. Instruction cycle, machine cycle, timing diagrams. Programming using 8085 instruction set Interfacing memory: Interfacing I/O – memory mapped I/O and I/O mapped I/O,	10	1
	**Assignment Topics	8257 – Direct Memory Access Controller (DMAC).		1
Module 2: Introduction to 8086	in class	8086 architecture, addressing mode. Instructions and assembly language programming. Interrupts of 8086. Intel 8086 bus cycles, instruction queue, read/write cycle in MIN and MAX mode, reset operation, wait state, halt state, hold state, lock operation, interrupt processing. DOS interrupt 21 h functions	10	2
	**Assignment Topics	Introduction to 80286, 80386, 80486 & Pentium Microprocessors		2
Module 3: Introduction to 8051	in class	8051 Architecture - Registers, Pin diagram, I/O ports functions, Internal Memory organization. External	10	3
	TANK A	8051 Stack, Stack and Subroutine instructions. Assembly language program examples on subroutine and involving loops.Real Time Control: Programming Timer interrupts, programming external hardware interrupts, Programming the serial communication interrupts, Programming 8051 timers and counters.		
CALT T		Page 31 o	f 175	

	**Assignment Topics			3
Module 4: ARM	in class	The RISC design philosophy, ARM design philosophy, ARM core data flow model,	10	4
Processor		Registers, CPSR-Processor modes, Banked registers. Pipeline-		
Fundamentals		Characteristics Fundamentals of ARM instructions, Barrel shifter, Classification, and explanation of instructions with examples		
		Explanation of instructions with examples Data processing, Branch, Load-store, SWI and Program Status Register instruction.		
	**Assignment			4
	Topics			
Module 5: Exception and Interrupt handling schemes	in class	Exception handling- ARM processor exceptions and modes, vector table, exception priorities, link register offsets. Interrupts- assigning interrupts, interrupt latency, IRQ and FIQ exceptions with example	8	5
	**Assignment Topics	Differences between ARM and THUMB		5

Text Books:

- 1. Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with the 8085, Penram International, Sixth Edition, 2013.
- 2. Douglas V. Hall, "Microprocessor & interfacing programming and hardware", Tata McGraw Hill. 2nd Edition,1992
- 3. ARM System Developer's guide –Andrew N. SLOSS, ELSEVIER Publications, ISBN
 - 978-81-8147-646-3, 2016
- 4. 2. ARM Assembly Language William Hohl, CRC Press, ISBN:978-81-89643-04-1

Reference Books:

- 1. B. Ram, Fundamentals of Microprocessors and Microcontrollers, Seventh Edition, Dhanpat Rai Publications, 2010.
- 2. Bary B. Brey, "The Intel Microprocessors: 8086/8088, 80286, 80386, 80486", Prentice Hall,2nd Edition ,1996.
- 3. ARM System-on-chip Architecture by Steve Furber, Pearson Education,ISBN978-81-
 - 317-0840-8, 2E,2012
- 4. LPC 2148 USER MANUAL
- 5. IN SIDE R'S GUIDE TO PHILIPS ARM7 BASED MICROCONTROLLERShitex.co.uk
- 6. ARM Programming Techniques from ARM website
- Embedded Systems: A Contemporary Design Tool- James K. Peckol ISBN: 978-0-471-72180-2 October 2007, ©2008

Fifth Semester Major Theory Subjects

Communication Engineering

Questions to be set: 05 (All Compulsory)

Course Objective: This course is designed to teach the analysis and design of analog communication systems. Topics include amplitude modulation, angle modulation and pulse modulation techniques, their generation as well as demodulation. Analysis of random signals and the comparison of receivers based on their noise performances is also included. This course is designed give a brief idea about Digital Communication & its related fundamentals. The course entitles major portions namely Digital Sources, Transmitters, Receivers, Nyquist Sampling theory, Quantization & Companding in PCM, Concept of PSK, FSK, DPSK and Information theory & Coding.

Pre-requisites: Fourier series and Fourier Transforms, probability and random process, and Signals and Systems.

Course Outcomes (CO): On Successful Completion of the course, students should be able to

- CO STATEMENT
- **CO1** Explain the basic concepts of amplitude modulation and demodulation techniques.
- **CO2** Analyze continuous angle (frequency and phase) modulation techniques, Evaluate the performance of analog communication systems in presence of noise.
- CO3 Explain the basic concepts of digital modulation.
- CO4 Analyze various types of multiplexing.
- **CO5** Analyze various types of digital modulation technique.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be	Topics	Hrs	CO
	covered			
	in	Types and reasons for modulation. Amplitude Modulation (AM),	10	1
Introduction to	class	Demodulation of AM signals-envelope detectors. Single Side Band		
Analog		Modulation (SSB), Double side band suppressed carries		
Communication		(DSB)modulation, Vestigial side band modulation (VSB).		
		Frequency Modulation (FM) and Phase Modulation (PM),		
		Overview of Instantaneous frequency and instantaneous phase, FM		
		and PM, Transmission bandwidth for FM,		
	**Assignment	Generation of SSB using a side band filter, indirect generation of		
	Topics	SSB.		
	-			
Frequency	in class	Phasor diagram for FM and PM Generation of FM using Armstrong	10	2
modulation and		method, Commercial FM requirements. Demodulation of FM and		
Phase		PM signals, the limiter discriminator, PLL		
Modulation				
		Different categories of Noise. Calculation of Noise Power and		
		Noise Figure. Significance of Noise Figure. Noise performance of		

		Analog Communication system, Signal to noise ratio in linear modulation, synchronous detection of DSB. Signal to noise ratio		
		for AM & SSB, comparison of DSB, SSB and AM. Signal to noise ratio for FM		
	**Assignment	The noise bandwidth of a linear time invariant systems and its use		
	Topics	in communication. SNR improvement using pre-emphasis & de- emphasis networks.		
Introduction to Digital Communication:	In Class	Basic block diagram of Digital communication systems, Analog to digital conversion technique: Sampling, Quantizing and Encoding, Nyquist sampling theory, Spectrum of a sampled signal, Aliasing, Effects of aliasing, Reconstruction of sampled signals, Anti- aliasing filter, Interpolation filter. Waveform coding Techniques Pulse code modulation(PCM), Block diagram, Transmitter and	10	3
		Receiver.		
	**Assignment	Overview of Wireless Channel: AWGN, Rayleigh, Rician, Optimum detection of a pulse in additive white noise		
	In Class	Quantizer, Types of quantizer, Working principle of quantizer,	8	4
Quantizer & Multiplexing:		Bandwidth of PCM, Quantization Noise in PCM, Signal to Quantization Noise Ratio, Effect of noise in PCM. Application of PCM. The Differential PCM (DPCM), Adaptive DPCM, delta modulation. Necessity of non-uniform quantizing, Companding, μ - law and A-law. Multiplexing(M) and Multiplexing Access (MA) Techniques: FDM/CDM/SDM and comparison of TDM and TDMA, CDM and CDMA, FDM and FDMA		
	**Assignment Topics			
Baseband Digital Data Transmission	In Class	Base band digital data transmission, Types of Line codes: Unipolar and bipolar NRZ and RZ format, Alternate Mark Inversion (AMI) format, Split phase Manchester code format, Polar quaternary NRZ format. Inter symbol Interference, Eye Diagram, SNR and Probability of error of a)Integrate and Dump Filter b)Optimum Receiver, c)Matched Filter.	10	5
	**Assignment	Raised Cosine Filter, Nyquist Condition for zero ISI, Band limited		
	Topics	Nyquist pulses.		
Digital Modulation Techniques		Generation and detection of ASK, FSK, PSK, DPSK, QPSK, QAM and MSK; Signal space representation, Bandwidth requirement and probability of error calculation of BPSK and QPSK, concept of BER and throughput, Channel coding techniques		
	**Assignment	Probability of error for QAM		
	Topics			

Page **35** of **175**
Text Books:

- 1. S. Haykin , An Introduction to Analog and Digital communications,4e, Willey Eastern. New York, 1989.
- 2. B.P.Lathi, Communication systems, oxford series, 4e, 2009

Reference Books:

- 1. C.W. Couch II. "Digital and Analog Communication Systems" 2e, Macmillan publishing company, New York, 1987.
- 2. Taub ,D.L.Shelling , Principles of Communication Systems, 2e, McGraw Hill Book Co., 2005.
- 3. Edward A. Lee, David G Messerschmitt, *Digital Communication*, 2e., Kluwer Academic Press, 2005.
- 4. Sanjay Sharma, *Communication Systems (Analog and Digital)*, 5e., S.K. Kataria & Sons, 2013.
- 5. P. Chakrabarty, *Analog and Digital Communication Systems*, 1e., reprint 2013, Dhanpat Rai & Co.
- 6. Paul L. Meyer, *Introductory Probability and Statistical Applications*, 2e, Addison Wesley, 1980.

INTRODUCTION TO MICRO-FABRICATION

Questions to be set: 05 (All Compulsory)

Course objectives:

The course aims to provide an overview of fabrication technologies and materials needed to realize modern micro-devices. It demonstrates how common micro-fabrication principles can be applied in different applications, Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding.

Prerequisite: Semiconductors, semiconductor physics and solid state devices.

Course outcomes

On completion of the course, the student will be able to:

- 1. Elucidate the CMOS process flow.
- 2. Analyze various critical processing steps in microfabrication.
- 3. Appreciate the advanced methods involved in IC fabrication.
- 4. Analyze the advancements in CMOS process fabrication with scaling in technology.
- 5. Have an understanding and overview of interconnects, metal gate, planarization, etc.

Module	Topics to be	Topics	Hrs	CO
1	In Class	Introduction: History of IC's; Operation & Models for Devices of Interest: CMOS and MEMS. Electronic Materials: Crystal Structures, Defects in Crystals, Si, Poly Si, Si Crystal Growth. Clean room and Wafer Cleaning: Definition, Need of Clean Room, RCA cleaning of Si.	10	1
	Assignment			
	Topics:			
2	In Class	Oxidation: Dry and Wet Oxidation, Kinetics of Oxidation, Oxidation Rate Constants, Dopant Redistribution, Oxide Charges, Device Isolation, LOCOS, Oxidation System.	10	2
	Assignment			
	Topics:			
3	In Class	Lithography: Overview of Lithography, Radiation Sources, Masks, Photoresist, Components of Photoresist Optical Aligners, Resolution, Depth of Focus, Advanced Lithography: E-beam Lithography, X-ray Lithography, Ion Beam Lithography.	10	3
Communicatio	A LAND AL AND A	Page	37 of 175	

Assignment

Topics:

In Class Diffusion: Pre-Deposition and Drive-in Diffusion Modeling, 4 Dose, 2-Step Diffusions, Successive Diffusion, Lateral Diffusion, Series Resistance, Junction Depth, Irvin's Curves, Diffusion System. Ion Implantation: Problems in Thermal Diffusion, Advantages of Ion Implantation, Applications in Ion Implantation System, Mask, Energy ICs, Loss Mechanisms, Depth Profile, Range & Straggle, Lateral Straggle, Dose, Junction Depth, Ion Implantation Damage, Post Implantation Annealing, Ion Channeling, Multi Energy Film Deposition: Physical Vapor Implantation Thin Deposition: Thermal evaporation, Resistive Evaporation, Electron beam evaporation, Laser ablation, Sputtering Chemical Vapor Deposition: Advantages and disadvantages of Chemical Vapor deposition (CVD) techniques over PVD techniques, reaction types, Boundaries and Flow, Different kinds of CVD techniques: APCVD, LPCVD, Metalorganic CVD (MOCVD), Plasma Enhanced CVD etc. Concept of atomic layer deposition (ALD).

Assignment

Topics:

5 In Class **Etching:** Anisotropy, Selectivity, Wet Etching, Plasma 8 5 Etching, Reactive Ion Etching.

Overview of Interconnects, Contacts, Metal gate/Poly Gate, Metallization, Problems in Aluminum Metal contacts, Al spike, Electromigration, Metal Silicides, Multi-Level Metallization, Planarization, Inter Metal Dielectric.

Assignment

Topics:

Books

- 1. Silicon VLSI Technology, Plummer, Deal and Griffin,1st Edition, Pearson Education,2009.
- 2. Fundamental of Semiconductor Fabrication, Sze and May,2nd Edition, Wiley India, 2009
- 3. Silicon Process Technology, S K Gandhi, 2nd Edition, Wiley India, 2009

10

VT303A1

VLSI VERIFICATION AND TESTING USING EDA TOOLS

Questions to be set: 05 (All Compulsory)

Course objectives:

Digital VLSI Design flow comprises three basic phases: Design, Verification, and Test. The web course would cover theoretical, implementation, and CAD tools pertaining to these three phases. Although there can be individual full courses for each phase, the present course aims to cover the important problems/algorithms/tools so that students get a comprehensive idea of the whole digital VLSI design flow. VLSI Design: High-level Synthesis, Verilog RTL Design, Combinational and Sequential Synthesis Logic Synthesis (for large circuits). Verification Techniques: Introduction to Hardware Verification and methodologies, Binary Decision Diagrams (BDDs) and algorithms over BDDs, Combinational equivalence checking, Temporal Logics, Modeling sequential systems and model checking, Symbolic model checking. VLSI Testing: Introduction, Fault models, Fault Simulation, Test generation for combinational circuits, Test generation algorithms for sequential circuits, and Built-in Self-test.

Prerequisite: Digital electronics, VLSI

Course outcomes

On completion of the course, the student will be able to:

- 1. understand scheduling, allocation, and binding.
- 2. describe the logic synthesis and binary decision diagram.
- 3. interpret the temporal logic and model checking.
- 4. realize the concept of testing and fault simulation.
- 5. understand the test pattern generation and memory testing.

Module	Topics to be covered	Topics	Hrs	CO
1	In Class	Introduction	10	1
		Lecture I: Introduction to Digital VLSI Design Flow Lecture II: High Level Design Representation Lecture III: Transformations for High Level Synthesis FPGA and field-programmable analog array (FPAA) Scheduling, Allocation and Binding		
		Lecture I: Introduction to HLS:Scheduling, Allocation and Binding Problem Lecture II and III: Scheduling Algorithms Lecture IV:Binding and Allocation Algorithms		
e Cor		NUT		

	Assignment Topics:			
2	In Class	Logic Optimization and Synthesis	10	2
		Lecture I,II and III: Two level Boolean Logic Synthesis Lecture IV: Heuristic Minimization of Two-Level Circuits Lecture V: Finite State Machine Synthesis Lecture VI: Multilevel Implementation		
		Verification: Binary Decision Diagram		
		Lecture-I:Binary Decision Diagram: Introduction and construction Lecture-II: Ordered Binary Decision Diagram Lecture-III: Operations on Ordered Binary Decision Diagram Lecture-IV: Ordered Binary Decision Diagram for Sequential Circuits		
	Assignment	Cheans		
	Topics:			
3	In Class	Temporal Logic	10	3
		Lecture-I: Introduction and Basic Operations on Temporal Logic Lecture-II:Syntax and Semantics of CLT Lecture-III:Equivalence between CTLFormulas Model Checking		
		Lecture-I:Verification Techniques Lecture-II, III and IV: Model Checking Algorithm Lecture-V:Symbolic Model Checking		
	Assignment			
	Topics:		10	4
4	In Class	Test: Introduction to Digital Testing	10	4
		Lecture-I: Introduction to Digital VLSI Testing Lecture-II: Functional and Structural Testing Lecture-III: Fault Equivalence		
		Fault Simulation and Testability Measures		
		Lecture-I, II and III: Fault Simulation		
	Assignment	Lecture-IV: Testability Measures (SCOAP)		
	Topics:			
5	In Class	Combinational Circuit Test Pattern Generation	8	5
		Lecture-I: Introduction to Automatic Test Pattern Generation (ATPG) and ATPG Algebras		
SMIT	And	Page 40	of 175	

Lecture-II and III: D-Algorithm

Sequential Circuit Testing and Scan Chains

Lecture-I: ATPG for Synchronous Sequential Circuits Lecture-II and III:Scan Chain based Sequential Circuit Testing

Built in Self test (BIST)

Lecture I and II:Built in Self Test Lecture III and IV: Memory Testing

Assignment

Topics:

Books

- 1. D. D. Gajski, N. D. Dutt, A.C.-H. Wu and S.Y.-L. Lin, HighLevel Synthesis: Introduction to Chip and System Design, Springer, 1st edition, 1992.
- 2. S.Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, Prentice Hall, 2nd edition, 2003.
- 3. G. De Micheli.Synthesis and optimization of digital circuits, 1st edition, 1994.
- 4. M. Huth and M. Ryan, Logic in Computer Science modeling and reasoning about systems, Cambridge University Press, 2nd Edition, 2004.
- 5. Bushnell and Agrawal, Essentials of Electronic Testing for Digital, Memory & Mixed-Signal Circuits, Kluwer Academic Publishers, 2000

EMBEDDED SYSTEMS

No. of questions to be set: 1 from each CO **No. of questions to be answered:** Five

Objectives: The objective of this course is to impart a solid understanding of the role of embedded systems and embedded systems design and development. This course delves into the processes of Real-Time Embedded Systems to provide the basic foundation in embedded systems.

Pre-requisites: Concepts of Digital Systems and Computer organization & architecture.

Course outcomes:

On completion of the course, the student will be able to:

1. describe the basics of design, modelling, development of embedded systems

2. develop the hardware for embedded system applications based on the processors

3. simulate and synthesize the embedded system by using the Embedded system and Linux operating system.

4. apply various real-time algorithms and implement the RTOS development tools in building real-time embedded systems.

5. design various advanced embedded systems.

Module 1 Introduction to Embedded	Topic Introduction. Definition, Categories of embedded systems, components, requirements of embedded systems, Challenges and issues in embedded system.	Hrs 8	CO 1
2	Design with 8051. Basic knowledge in ARM, PIC and	10	2
Concept of different	Digital Signal Processor, Architecture of embedded memory, Basic structure and applications of Latch, Buffer,	10	_
Processors	Crystal, reset circuit, Watch dog timer, Display unit and key		
3 Embedded	pad. Embedded programming in C for relay, stepper motor, opto-coupler, serial port, timer, interrupt, project study in C	10	3
Programming	for LCD, Keyboard interfacing, elevator. Concepts of Linux Programming, I/O programming, Process and memory management programming, cell programming. Arduino and MSP 430 programming.		
4	Introduction, Basic features, description of Layer model	10	4
Real time	and Kernel operations for general operating system and real		
operating	time operating system, concept of Task, Process and		
System	Thread, Task Scheduling, Task synchronization, Device		
	driver, inter process communication.		

5	Embedded software development process, Conversion of	10	5
Embedded	ALP and high level language into ROM image, ICE, IDE,		
Software	Linking and locating software, Contact less Smart card,		
Development	SoC for cell phone, Internet of Things, Artificial		
	Intelligence		

Books:

- 1. Raj Kamal, Embedded system: Architecture, programming and Design ,3e, McGraw Hill Education, 2017.
- 2. Shibu K V, An introduction to Embedded system, 2e, McGraw Hill Education India Private Limited, 2017.
- 3. Mazidi, Muhammad Ali, the 8051 microcontroller and embedded systems Using Assembly and C, Pearson, 2018.

Sixth Semester Major Theory Subjects

Page 44 of 175

INDUSTRIAL MANAGEMENT

Questions to be set: 05 (All Compulsory)

Course Objectives: The objective of this course is to acquaint the student with developing deeper understanding of the concept of management by understanding its evolution. It also introduces the functions of general management in detail as well as the quantitative techniques useful to make objective decisions. It also acquaints the students with techniques useful for production planning and control as also materials management.

Course Outcomes (CO):

After successful completion of this course, students will be able to:

CO1 Explain theories of management and their practical applications in solving business/ industrial problems.

CO2 Apply the available resources to achieve the desired goal in a more efficient and effective way.

CO3 Describe the Principles of organizing in management system

CO4 Explain the Quantitative Techniques and Production Management in Managerial Decisions

CO5 Summarize the production technique in solving the issues related with proper management of material and inventory management.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: <introduction to</introduction 	in class	Philosophy and Development of Management thought. Concept and definition of management, Functions and Roles of Management, Social Responsibilities of	5	1
Management>		Management, Taylor's Scientific Management, Contribution of Henry Fayol, Gilberth and Mayo.		
	**Assignment Topics			1
Module 2: <schools of<br="">Management></schools>	in class	Human Behaviour, Social System, Systems approach, management process school, Nature and purpose of planning objectives, Different types of Plans, steps in planning, schedule planning, product planning, Strategic Planning, Long, medium- and short-term planning, decision making, project planning, management by objectives.	5	2
	**Assignment Topics			2
Module 3: < Principles of Organizing>	in class	Principles of organizing, steps in organizing, organizational structure, levels and span of management, span of control, formal and informal organization, line and staff functions, responsibility and accountability, delegation of authority. Manpower planning and recruitment, selection process, training and development,	5	3
nics & Communic	THE MANINA IN	performance appraisals. Models and styles of leadership,		

Page 45 of 175

	**Assignment Tonics	managerial grid, motivation, interpersonal relations, personality, and communication process, types, barriers, effective communication. Concept, nature and purpose, process, methods and practice of control, role of internal audit.		3
Module 4: <quantitative Techniques and Production Management in Managerial Decisions:></quantitative 	in class	Concept of budget and budgetary control. Time- event network analysis; Decision Tables; Concept of productivity, measuring productivity, Use information technology, Types of production; Types of Planning, Manufacturing Planning; Production planning, Scheduling; Work study & Method study, Systems of wage payments, bonus, Automation. Organization of production, planning and control department	6	4
	Topics			+
Module 5: < Materials and Inventory Management>	in class	Practice of purchasing and materials management, quality, quality standards and inspection, sources of supply; pricing principles and practices. Inventory Management, EOQ model; Value Analysis and Value Engineering, Practical work	6	5
	**Assignment Topics			5

Text Books:

H. Koontz and H. Weihrich, "Management", McGraw Hill, 1989.

Reference Books:

Dobler W.D. "Purchasing & Materials Management", TMHC, New Delhi, 1984.

SEMICONDUCTOR MATERIALS SYNTHESIS AND CHARACTERIZATION

Questions to be set: 05 (All Compulsory)

Course objectives:

The course aims to provide an overview and understanding of Silicon extraction and purification process. Crystallography of silicon and various methods of crystal growth. Have understanding of key methods of physiochemical, morphological and analytical characterization techniques,

Prerequisite: Semiconductors and semiconductor physics.

Course outcomes

On completion of the course, the student will be able to:

1. Understand the Silicon extraction and purification process.

2. Understand Crystallography of Si.

3. Understand various methods of crystal growth.

4. Understand principle, operation and practice of sub-merged arc furnace, energy and process calculation.

5. Understand key methods of physicochemical, morphological and analytical characterization techniques.

Module	Topics to be	Topics	Hrs	CO
	covered			
1	In Class	Principles of extraction, pyrometallurgical processes, material and heat balance of processes, thermodynamics of processes; introduction to laws, thermodynamic equilibrium, thermochemistry, Ellingham diagram.	10	1
	Assignment			
	Topics:			
2	In Class	Process kinetics; introduction to chemical kinetics and rate processes, heterogeneous kinetics, kinetics of liquid-liquid reactions, concepts of reactor design. Structure & properties of molten liquids.	10	2
	Assignment			
	Topics:			
3	In Class	Production of metallurgical grade (MG) Si: Carbothermic	10	3

reduction, principle, operation and practice of sub-merged arc furnace, energy and process calculation, refining & impurities

Page **47** of **175**

		control in molten MG Si.Production of electronic grade (EG) Si: Concept of fluidized bed reactor, Siemens Process.		
	Assignment			
	Topics:			
4	In Class	Crystal Growth: Crystal growth processes (Bridgman and its variants, Czochralski), heat and species transfer during non-steady and steady state plane-front growth, interface instability and effect of convection on interface stability.	10	4
	Assignment			
	Topics:			
5	In Class	XRD (Bulk and thin film), Microscopy (Optical, SEM, TEM, SPM), UV-Visible spectroscopy, Photoluminescence, Raman spectroscopy	8	5
	Assignment			
	Topics:			

<u>Books</u>

- 1. Principles of Extractive Metallurgy, Terkel Rosenqvist, McGraw-Hill Book Company, 1973.
- 2. Stoichiometry and Thermodynamics of Metallurgical Processes: Y K Rao, Cambridge University Press, 2009.
- 3. Handbook of Extractive Metallurgy: Fathi Habashi; Wiley-VCH, 1997.
- 4. Solar-Grade Silicon: Refining and Recycling: L Zhang et al, CRC Press, 2013.
- 5. Scheel and Capper: Crystal Growth Technology: From Fundamentals and Simulation to Large-scale Production, John Wiley & Sons, 2008.
- 6. Nakajima and Usami: Crystal Growth of Si for Solar Cell, Springer, 2009.

VT306A1

Microelectronics & VLSI Design

Questions to be set: 05 (All Compulsory)

Course Objectives: The course is intended to give students a good understanding of MOS transistor and introduction to Scaling of MOS circuits which will help them to design Very Large Scale Integrated circuits.

Pre-requisites: Digital logic circuits, Basic of transistors, CMOS based digital logic design

Course Outcomes(CO): Student can able to

- 1. design basic CMOS structure and calculate various numerical parameters related to CMOS design.
- 2. design different combinational and sequential MOS device.
- 3. draw the stick diagram and layout of CMOS device in different technology.
- 4. describe different Micro-electronics process used in VLSI design
- 5. describe different Physical design and test the validity of design

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	In class	Introduction, Design flow, Modern trends in VLSI, design	8	1
Introduction to VLSI	Topics	domains-Y Chart, Device Scaling and its classifications,		
		Construction and operation of CMOS device.		
	Assignment Topics	Application and modern trends of VLSI Design		
Module 2:	In class	CMOS inverter, Complex logic circuit, Pass transistors,	10	2
Design of Combinational	Topics	Transmission gate, Complementary passes logic circuit, Dynamic		
and Sequential		CMOS circuit, NORA logic, Domino Logic, Pseudo NMOS.		
CMOS circuits		CMOS logic circuits (SR latch, D flip flop), Register circuit,		
		memory,		
	Assignment	Design of different analog CMOS deice and Arithmetic logic		
	Topics	building blocks.		
Module 3:	In class	n-well, p-well, Silicon on insulator .Stick diagram, with specific	10	3
technology & Design rule:	Assignment Topics	Formation of layout and stick diagram for complex Boolean function.		
Module 4:	In class	An overview of clean room, single crystal wafer formation,	10	4
sics & Communic	Topics	oxidation, photolithography, ion implantation and metallization.		
SMIT SMIT		Page 49 of 175		
Hedad & Onis	Sing Same			

Microelectronics process for VLSI	Assignment Topics	Numerical from process fabrication.		
Module 5:	In class	Basics of synthesis (Logical and Physical Synthesis), synthesis	10	5
Physical design and Testing	Topics	flow, Basic concept of Floor paining, Placement and routing		
		methods and their important algorithms. Basic concept Faults and		
		their types and models, concept of different testing techniques,		
		Manufacturability and Yeild.		
	Assignment Topics	DRC and Sample case study based on physical design and testing. Role of VHDL/Verilog and FPGA for IC design.		

Text Books:

- 1. S.M Kang, CMOS Digital Integrated Circuits, Tata McGraw Hill, 3e, 2018
- 2. Behzad Razavi, Design of analog CMOS integrated Circuit, McGraw Hill Education.
- 3. S.M Sze, VLSI Technology, McGraw Hill, 2e, 2013
- 4. J. D. Plummer, M D. Deal, P B. Griffin, Silicon VLSI Technology, Pearsons India,2018

Reference Books:

- 1. Rabaey-Chandrakasan, Digital Integrated Circuits, Pearson, 2nd edition, 2013.
- 2. Mead and Conway, Introduction to VLSI systems, Addison Wesley.2013
- 3. Amar Mukherjee, Introduction to NMOS and CMOS VLSI design, PHI, 2013.
- 4. Pucknell and Eshrangian, Basic VLSI Design Systems and Circuits, PHI,2018.

Third Semester Major Laboratory

VT201A4

ELECTRONIC DEVICES AND COMPONENTS LAB.

Course Objectives:

- i. To familiarize the students with the electronics circuits.
- ii. To design and construct various electronic circuits like rectifier, clipper, clamper, voltage regulator, JFET, etc. both using discrete components and Multisim software.

Pre-requisites: Basic Electronics, Engineering Physics.

Course Outcomes (CO): Students should be able to

- 1. understand different electronic circuits and equipments and its related techniques.
- 2. understand and implement the basic diode characteristics and its applications viz. Regulators, Rectifiers, Clippers, Clampers, Multipliers.
- **3.** analyze and study different Passive Filters viz. C-Filter, Π- Filter.
- 4. design and analyze BJT and JFET characteristics and its biasing circuits.
- 5. understand and study the different characteristics of Optoelectronic components.

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	in	Expt. 0:- Familiarization of Basic Electronics Components,	3	1
Electronic	class	Study of the Lab instruments: Oscilloscope, Function		
Equipments		Generator, Multimeter, Resistor Colour Codes, Recognition		
		of PN transistors. etc.		
		Expt. 12:- Case Study: Hardware implementation and		
		Validation of any Basic Electronics Circuit using Vero		
		Board.		
Module 2:	in	Expt. 1:- Study the Characteristics of Diodes: Zener,	15	2
PN Junction	class	Germanium, Silicon.		
Diode		Expt. 2:- Study of Voltage Regulator.		
Applications		Expt. 3:- Study of Rectifiers: Half wave Rectifier, Full wave		
		Rectifier, Bridge Rectifier.		
		Expt. 4:- Study of Clipper and Clamper Circuit.		
		Expt. 5:- Study of Voltage Multiplier.		
Module 3:	in	Expt. 6:- Study of Passive Filters: C- Filter, П- Filter	3	3
Passive Filters	class			
Module 4:	in class	Expt. 7:- Study of Bipolar Junction Transistor	12	4
Transistor		Characteristics: CB Configuration.		
Characteristics		Expt. 8:- Study of Bipolar Junction Transistor		
		Characteristics: CE Configuration.		
		Expt. 9:- Study of Bipolar Junction Transistor Biasing: Fixed		
		Bias, Voltage Divider Bias.		
		Expt. 10:- Study of Field Effect Transistor Characteristics.		
Module 5:	in class	Expt. 11:- Study the Characteristics of Photovoltaic	3	5
Optoelectronic		Components: Photodiode, LDR, LED, Photo Transistor.		
Devices	& Comm	A MARINA A		

SMIT

VT202A4

Digital Electronics and System Design Lab

Minimum number of experiments to be completed: 12 (covering all the modules)

Course Objective: To understand the digital components and the design of basic digital circuits.

Pre-requisites: Elementary knowledge of digital number systems.

Course Outcomes (CO): After the completion of this course, the students should be able to:

- CO1. Identify and enlist the various components of combinational digital electronic circuits.
- CO2. Design and verify the results of digital multiplexers and decoders.
- CO3. Verify and evaluate the digital circuits that use flip-flops.
- CO4. Use flip-flops to design counters.
- CO5. Design sequential circuits using flip-flops and other digital components.

Module	Topics to be covered	Topics	Hrs	CO
1	Experiment 1	Verification of ICs and familiarization if the Digital Trainer Kits.	2	1
Basic	Experiment 2	Design (i) Half adder and (ii) Full adder (iii) Half subtractor and	2	
Combinational	-	(iv) Full subtractor		
Circuits	Experiment 3	Design (i) BCD to Excess-3 Code Converter, (ii) Excess-3 to BCD Code Converter	2	
2	Experiment 4	Design (i) 2-to-4-line active HIGH outputs Decoder, (ii) 1:4	2	2
Multiplexers	1	Demultiplexer using logic gates		
and Decoders	Experiment 5	Design of an 8:1 Multiplexer using two 4:1 Multiplexers using multiplexer IC	2	
	Experiment 6	Construct (i) SR Flip Flop (ii) D Flip Flop (iii) _IK Flip Flop (iv) T Flip Flop using logic gates and verify them	2	
3 Flip-Flops	Experiment 7	Convert a (i) JK FF to a D FF (ii) JK FF to a T FF (iii) D FF to a JK FF (iv) D FF to a T FF	2	3
r i'	Experiment 8	Design a decade asynchronous up counter.	2	
	Experiment 9	Design a mod 8 asynchronous up/down counter with a control line	2	
	I	(to control the up or down count)		
4 Counters	Experiment 10	Design a mod 16 synchronous up counter using JKFFs.	2	4
	Experiment	Design a mod 4 synchronous up/down counter with a control line	2	
	11	(to control the up or down count) using DFFs		
	Experiment 12	Design (i) 4 BIT ring counter, (ii) 4 BIT twisted ring counter using DFFs	2	
5	Experiment	Design a 1-3-5-7 self-correcting to 1 counter using JK FFs	2	5
Sequential	13			
Circuits	Experiment	Using D FFs, Construct 3-BIT shift registers in (i) SISO (ii) SIPO	2	
	14	(iii) PIPO & (iv) PISO modes		
	Experiment	Design a circuit that produces a HIGH output if a sample data input	2	
	15	is tested three times and found at a relatively HIGH voltage level on odd number of times and then returns to the initial condition		
& Com-	JAN DATA	and start the testing process again		

Page 53 of 175

Fourth Semester Major Laboratory

Page 54 of 175

ANALOG ELECTRONICS & CIRCUITS LAB.

Course Objectives:

- i. To familiarize the students with the electronics circuits design.
- ii. To design and construct various electronic circuits like power supply, oscillators, multivibrator and uses of operational amplifier.

Pre-requisites: Basic Electronics, Electronic Devices And Circuit.

Course Outcomes (CO): Students should be able to

- 1. understand different techniques for hardware implementation.
- 2. design different transistor amplifier electronic circuits.
- 3. design various types of oscillator circuits for generating frequency of oscillations.
- 4. analyze and study different Op-Amp applications.
- 5. design and analyze various types of multivibrators.

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Electronic Equipments	in class	Expt12:- Case Study: Hardware Implementation And Validation Of Any Basic Electronic Circuit Using PCB (Printed Circuit Board)	2	1
Module 2: Transistor Amplifier	in class	Expt1:- To plot the Frequency Response Curve of a Voltage Series Without Feedback Amplifier.Expt2:- To plot the Frequency Response Curve of a Voltage Series Feedback Amplifier.Expt11:- To plot the Frequency response of an FET Amplifier.	6	2
Module 3: Oscillator Circuits	in class	Expt3:- Design and observe R-C-Phase-Shift Oscillator for a given Frequency and to study the variation of Frequency by verifying the $C = C1 = C2 = C3$. Expt4:- Design a Hartley Oscillator and determine the frequency of oscillations.	4	3
Module 4: Op-Amp applications	in class	 Expt5:- Op-amp based Adders and Subtractor for Inverting and Non-Inverting configuration. Expt6:- Op-amp based Integrator & Precision Rectifier (1kHz - 5kHz) Expt7:- Op-amp based active filters: High Pass Filter & Low Pass Filter. Expt8:- To design a 3-bit R- 2R ladder Digital To Analog Converter using Op-Amp. 	8	4
Module 5: Multivibrator Circuits	in class	Expt9:- To design a Monostable Multivibrator using 555 Timer (for a given frequency). Expt10:- To design an Astable Multivibrator using 555 Timer (for a given frequency).	4	5

Microprocessor and Microcontroller Lab.

Course Objective: To give the students the practical implementation and programming knowledge of various circuitries with IC 8085 & 8086 microprocessor and its interfacing. In this subject, students are introduced to various microprocessors and its interfacing related design, flow chart and the 8085-programming concept.

Pre-requisites: Digital electronics.

Course Outcomes (CO): Students should be able to

- 1. Write and execute 8085 assembly language programs.
- 2. Learn 8085 execution set and try to implement them in the laboratory the same for writing programs in C.
- 3. Write error free code in assembly for 8085 and 8086 microprocessors.
- 4. Debug syntax errors prompted by the TASM.
- 5. Work on ARM processors.

Module	Topics to be covered	Topics	Hrs	СО
Module 1:	in	Expt1 Familiarization with the 8085 micro-processor	4	1
Introduction to	class	kit.		
Micrprocessor		Expt2 Binary & BCD addition of two bytes stored in		
8085		(i) consecutive and (ii) non-consecutive locations.		
		Expt3 Binary & BCD addition of more than two		
		bytes stored in consecutive locations.		
		Expt4 Finding difference between two bytes/packed		
		BCDs stored either in		
		(i) Consecutive locations and (ii) non-consecutive		
		locations.		
Module 2:	in	Expt5 To check whether a given number is even or	4	1,2
8085 execution	class	odd.		
set		Expt6 To check whether a byte has even parity or odd parity.		
		Expt7 Conversion of binary to BCD or BCD to binary code.		
		Expt8 Developing a 8 bit binary up counter using 8		
		LEDs by interfacing logic controller card.		
Module 3:	in	Expt9 Rotating the shaft of the stepper motor by	2	3,4
Implementation	class	interfacing the stepper motor control card.		,
-		Expt10 Controlling all the signals of ADC(IC-0809)		
		during analog to digital conversion and display the		
		digital o/p at the display section of the MP kit.		
Module 4:	in class	Expt11 Introduction of Debug to familiar with 8086	2	4
8086		processor by developing & executing a small program.		
e Com	TANDA			

Page 56 of 175

		Expt12 Signed number operations.		
Module 5: ARM	in class	Expt13 Displaying "Hello World!" on the screen using INT-21H.	4	4,5
Processors		Expt14 Entering a string & after checking for palindrome displaying massage i.e. whether it is palindrome or not using INT-21H.		
		Expt15 Overview of ARM architecture.		

Fifth Semester Major Laboratory

Page 58 of 175

n of Elect.

HDL Simulation LAB

Minimum No. of Experiments to be carried out: 12.

Course Objective: To familiarize the students with the basics of VHDL, Verilog programming, and circuit simulation using EDA tool. Students will be able to design digital electronic circuitry, acquire knowledge of the above programming language, RTL synthesis, simulation, and finally be able to implement it on FPGA (Spartan /Vertex) Board. Students will be able to design the CMOS circuitry and layout of the CMOS circuitry using EDA tools.

Pre-requisites: Digital Electronics, Embedded system, Microelectronics and VLSI Design

Course Outcomes (CO):

The students should be able to:

- 1. Design various combinational circuits using VHDL (Dataflow and Behavioral style of modeling).
- 2. Implement various combinational circuits using VHDL (Structural style of modeling)
- 3. Implement various sequential circuits using Verilog HDL.
- 4. Design various circuits (CMOS, transmission gate and pass transistor logics) using EDA tools.
- 5. Design and implement layout of basic gates using EDA tools.

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	in	Design and Write VHDL code for full adder using half		1
	class	adder, 4:1 Mux using dataflow, behavioral and structural		
		modeling, 3:8-line decoder using case statement, 4-2-line		
		encoder.		
Module 2:	in	Design and Write VHDL code for 3-bit comparator using a		2
	class	1-bit comparator and basic gates, 4-bit parallel adder		
		structural modeling, 4-bit parallel adder/ subtractors using		
		generate statement.		
Module 3:	in	Design and Write Verilog code for SR flip flop,		3
	class	asynchronous 4-bit UP counter using J-K FF, 4-bit register,		
		16-bit ALU.		
Module 4:	in class	Design and analysis of AND gate, OR gate, 4:1 Multiplexer, Ex-OR gate, Ex-OR gate using Transmission gate, boolean function by Pass Transmission gate, Dynamic CMOS, Domino logic circuit, NORA logic		4
& Communi	IN MANIPAL	circuit with the help of EDA Tools.		
SMIT SMIT		Pag	ge 59 of	f 175

Module 5: in class Design layout of an Inverter circuit and universal logic gate using an equivalent layout tool. Use any standard Design rules.

VT302A4

PYTHON PROGRAMMING Lab

Minimum number of Experiments to be completed: 12 (Covering all the Modules).

Course Objectives: Provide knowledge of python code used in various application

Pre-requisites: Knowledge of basics programming.

Course Outcomes (CO):

After studying this course, students will be able to:

- 1. Write, test, and debug simple Python programs.
- 2. Implement Python programs with conditionals and loops.
- 3. Develop Python programs step-wise by defining functions and calling them.
- 4. Use Python lists, tuples, dictionaries for representing compound data.

5. Read and write data from/to files in Python

Module	Experiment No.	Experiment Name	Hrs	CO
1. Write and test Simple Python programs using list and tuples.	1	 A) Create a list and perform the following methods 1) insert() 2) remove() 3) append() 4) len() 5) pop() 6) clear() 	7	1
		 B) Create a dictionary and apply the following methods 1) Print the dictionary items 2) access items 3) use get() 4)change values 5) use len() 		
		C) Create a tuple and perform the following methods 1) Add items 2) len() 3) check for item in tuple		
2. Python Programs using	2	Write a python program to add two numbers. Write a python program to print a number is positive/negative using if-else.	8	
conditions and loops		Write a python program to find largest number among three numbers.		
Communication		Write a python Program to read a number and display corresponding day using if_elif_else?		
Jo man		Page 61	. of 175	

3.Use of Python Functions	3	 A) Write a program to create a menu with the following options 1. TO PERFORM ADDITITON 2. TO PERFORM SUBTRACTION 3. TO PERFORM MULTIPICATION 4. TO PERFORM DIVISION Accepts users input and perform the operation accordingly. Use functions with arguments. 	7
	4	 B) Write a python program to check whether the given string is palindrome or not. C) Write a python program to find factorial of a given number using functions D) Write a Python function that takes two lists and returns True if they are equal otherwise false A) Write a program to double a given number and add two numbers using lambda()? B) Write a program for filter() to filter only even numbers from a given list. 	
		C) Write a program for map() function to double all the items in the list?	
		D) Write a program to find sum of the numbers for the elements of the list by using reduce()?	
4. File Handling	5	 A) Demonstrate a python code to implement abnormal termination? B) Demonstrate a python code to print try, except and finally block statements C) Write a python program to open and write "hello world" into a file? D) Write a python program to write the content "hi python programming" for the origina file. 	7
	6	A) Write a python program to get python version.B) Write a python program to open a file and	
Sics & Communic	A	check what are the access permissions acquired by that file using os module?C) Write a python program to display a particular month of a year using calendar module.D) Write a python program to print all the months of given year.	
SMIT SMIT	7	A) Write a python program to print date, time for today and now.	of 175
redau tour			

B) Write a python program to add some days to your present date and print the date added.C) Write a python program to print date, time using date and time functions.

D) Write a python program which accepts the radius of a circle from user and computes the area (use math module).

7

A) Write a python program to create a package(college), sub-package(alldept), modules (it,cse) and create admin and cabin function to module?

B) Write a python program to create a package (Engg), sub-package(years),modules (sem) and create staff and student function to module?

A) Write a python Program to display welcome to MRCET by using classes and objects.

B) Write a python Program to call data member and function using classes and objects

C) Write a program to find sum of two numbers using class and methods

D) Write a program to read 3 subject marks and display pass or failed using class and object.

A) Using a numpy module create an array and check the following:

- 1. Type of array
- 2. Axes of array
- 3. Shape of array
- 4. Type of elements in array

B) Using a numpy module create array and check the following:

- 1. List with type float
- 2. 3*4 array with all zeros
- 3. From tuple
- 4. Random values

C) Using a numpy module create array and check the following:

- 1. Reshape 3X4 array to 2X2X3 array
- 2. Sequence of integers from 0 to 30 with steps
- of 5
- 3. Flatten array
- 4. Constant value array of complex type

A) Write a python program to concatenate the Data frames with two different objects

5. Creating classes and object

11

8

9

B) Write a python code to read a csv file using pandas module and print the first and last five lines of a file.

12

A) Write a python code to set background color and pic and draw a circle using turtle module

B) Write a python code to set background color and pic and draw a square and fill the color using turtle module

C) Write a python code to perform addition using functions with pdb module.

Sixth Semester Major Laboratory

VT303A4

Communication Engineering Lab

Minimum No. of Experiments to be carried out: 12.

Course Objective: To give the students the basic ideas on analog communication. In this subject, students are introduced with topics like filters design using OPAMP and various modulation techniques used in analog communication.

Pre-requisites: Signal and systems.

Course Outcomes (CO):

The students should be able to:

- 1. Design various filters using OPAMPS
- 2. Implement various Analog Modulation Techniques
- 3. Implement various Multiplexing Techniques
- 4. Implement Sampling and Digital Modulation Techniques
- 5. Implement Differential Modulation Techniques

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	in class	Realization of Band pass filter using Op-AMP Realization of wide Band reject filter using Op-AMP Realization of Notch filter using Op-AMP		1
Module 2:	in class	Study of Continuous Time Domain signal spectrum using FOURIER spectrum trainer/ Simulation Amplitude Modulation & Demodulation Simulation (Time Domain/Spectral Characteristics of AM) Hardware Experiment Frequency Modulation & Demodulation Simulation(Time Domain/Spectral Characteristics of FM) Hardware Experiment Pulse Amplitude Modulation & Demodulation Simulation Hardware Experiment		2
Module 3:	in class	Pulse Width Modulation Simulation Hardware Experiment Pulse Position Modulation & Demodulation Simulation Hardware Experiment Frequency Division Multiplexing & Demultiplexing Simulation Hardware Experiment		3
SMIT SMIT	S AND	Time Division Multiplexing & Demultiplexing Simulation Page 66 of 175		

		Hardware Experiment
Module 4:	in class	Signal Sampling and reconstruction
		Simulation
		Hardware Experiment
		Experiments on line coding and decoding of signal.
		Study of Pulse Code Modulation and Demodulation
Module 5:	in class	Delta modulation
		Adaptive delta Modulation
		Study of Delta Pulse Code Modulation and Demodulation. FSK,
		PSK, DPSK and QAM Modulation through simulation
		Study of QAM through hardware kits.

4

5

ARM based SOC Design Lab

Minimum number of experiments to be completed: 12 (covering all the modules)

Course Objective: To develop Arm Cortex-M0 based SoCs, from creating high-level functional specifications to design, implementation and testing on FPGA platforms using standard hardware description and software programming languages.

Pre-requisites:

- Basics of hardware description language (Verilog or VHDL)
- Basic C and assembly programming

Course Outcomes (CO): After the completion of this course, the students should be able to:

- CO6. Know about Verilog HDL and hierarchical modelling concept.
- CO7. Know about ARM cortex architecture.
- CO8. Understand AMBA protocol.
- CO9. Understand AHB protocol.
- CO10. Program an SoC using C language.

Topics to be	Topics	Hrs	CO
covered			
Experiment 1	Introduction to Verilog HDL & Hierarchical Modelling Concepts	2	1
Experiment 2	AHB Light bus architecture	2	
Experiment 3	Building a System on Chip- Integrating AHB peripherals to ARM	2	
Experiment 4	UART, Timer, MEMORY, GPIO etc.	2	2
Experiment 5	Introduction to Arm-based System on Chip Design	2	
Experiment 6	The Arm Cortex-M0 Processor Architecture: Part 1	2	
Experiment 7	The Arm Cortex-M0 Processor Architecture: Part 2	2	3
Experiment 8	AMBA 3 AHB-Lite Bus Architecture	2	
Experiment 9	AHB SRAM Memory Controller	2	
Experiment 10	AHB VGA Peripheral	2	4
Experiment 11	AHB UART Peripheral	2	
Experiment 12	Timer, GPIO and 7-Segment Peripherals	2	
Experiment 13	Interrupt Mechanisms	2	5
Experiment 14	Programming an SoC Using C Language	2	
Experiment 15	Application Programming Interface and Final Application	2	

Program Elective-1

Page 69 of 175

Electromagnetic Theory

Questions to be set: 05 (All Compulsory)

Course Objective: To serve as a beginner course in acquiring knowledge in Electromagnetic waves. This course describes fundamentals of Coordinate systems, Vector Calculus, Static Electric Fields, Electric and Magnetic flux, Electric Current density, Magnetic fields, Maxwell's equations, Solution of Maxwell's equation in different medium conditions.

Pre-requisites: Differential and Integral Calculus, concept of vectors, coordinate geometry, Basic idea on electric and magnetic field.

Course Outcomes (CO): On Successful Completion of the course

CO	STATEMENT	BL
CO1	Students should be able to comprehend the concepts of electrostatics,	2,3
CON	and apply the knowledge in solving the relevant problems.	22
02	and apply the knowledge in solving the relevant problems.	2,5
CO3	Students should be able to apply the Maxwell equations in steady and	3,4
	time-varying conditions.	
CO4	Students should be able to analyze the electromagnetic wave propagation through different media and power measurement using	3,4
a a	Poynting vector theorem.	
CO5	Student should be able to explain the characteristics of transmission line.	3,4

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1; Revision of Vector algebra , Coordinate system and Vector calculus	In class	Revision of formulas related to vector algebra, Coordinate geometry (cartesian, Cylindrical and spherical) and Vector calculus (Gradient, Divergence, curl, laplacian)	10	1
	**Assignment Topics	Gauss theorem, Stokes theorem		
Module 2: Electrostatics Fields and Electric Fields in Material Space	in class	Coulomb's law and field intensity, Electric fields due to continuous charge distribution, Electric Flux density, Gauss's Law – Maxwell's Equation, Application of Gauss's law, Electric potential, Relation between electric field and electric potential. Properties of materials, Convection and conduction current, Current density, Types of dielectric medium: Linear, Isotropic and Homogeneous dielectrics, Boundary conditions.	14	2
SMIT SMIT		Page 70 of :	175	

3
0
6 4
8 5

Text Books:

1. Matthew N.O. Sadiku., Principles of Electromagnetics, 4th Edition, Oxford University Press , 2009

2. Liao S., Microwave Devices and Circuit, 3e, Prentice Hall, 2013.

Reference Books:

1. Jordan Edward, C Balmain Keith G., Electromagnetic wave and Radiating System, 2e, Prentice Hall, 2013.

2. M.L.Sisodia and Vijaylaxmi Gupta, Microwaves, Introduction to Circuits, devices

VT202A3

Network Analysis and Synthesis

Questions to be set: 05 (All Compulsory)

Course Objectives: To enrich the knowledge of the students with a sound understanding of various techniques of network analysis and synthesis.

Pre-requisites: Basics of circuit theory, Laplace Transform, Integration, first and second order

homogenous and non-homogeneous solution.

Course Outcomes (COs):

After successful completion of this course, students will be able to:

CO1: Apply the network theorems of electrical networks and initial conditions in electrical circuits.

CO2: Use Laplace transform to solve differential equations for electrical networks.

CO3: Determine the network function and two port network parameters of an electrical network.

CO4: Apply graph theory for solving electrical network problems.

CO5: Synthesize passive networks and design of filters.

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Basics of Network and Theorems	in class **Assignment	Circuit Elements (R, L, C, Mutual Inductance, Independent and Dependent Current and Voltage Sources), Classification of Networks (Passive and Active N/W, Lumped and Distributed N/W, Linear and Non-Linear N/W), RC integrator (LPF), RC differentiator (HPF) and response studies, Thevenin's theorem, Norton's theorem, Star-Delta Transformation, Superposition theorem, Maximum	8	1
	Topics	Power Transfer theorem.		
Module 2: Steady state and transient	in class	Initial conditions in elements, Procedure for evaluating initial conditions, Steady state and transient analysis, Application of Laplace transform in network analysis	10	2
analysis.	**Assignment Topics	Practice problems		2
Module 3: Network Functions and	in class	1 port and 2 port Network functions, Poles and zeroes of network functions, 2 port variables, short circuit and open circuit parameters transmission and hybrid parameters	10	3
Two Port Parameters	**Assignment Topics	Transmission and hybrid parameters.		3
Module 4: Graph Theory	in class	Graph of a network, Concepts of tree and links, Incidence matrix, Tie- set and cut-test schedules, Solution of Networks.	10	4
SMIT SMIT	A Strang Service	Page 72 (of 175	

	**Assignment Topics	Principles of duality.	4
Module 5: Passive network synthesis and	in class	Positive real functions, synthesis of R-L, R-C and L-C 10 network, Characteristic impedance, propagation constant, Constant K-Type filter Design (Low pass, High pass), Drawbacks & remedies of K filters.	5
Filter Design	**Assignment Topics	Synthesis of R-C and L-C network.	5

1. M.E. Van Valkenburg, Network Analysis, PHI, 3rd edition, 2014.

2. D. Roy Choudhury, Networks and Systems, 2e, New Age international Publisher, 2011.

Reference Books:

1. Franklin.F.Kuo, Network Analysis and Synthesis, Wiley Edition, 2e, 2012.

2. Ravish R Singh, Network Analysis and Synthesis, McGraw Hill Education, 2013.

3. A. Sudhakar, SS Palli, *Circuits and Networks Analysis and Synthesis*, McGraw Hill, 5e,2015.

Object Oriented Programming using C++

Questions to be set: 05 (All Compulsory)

Course Objectives: This course is designed so that thestudent should be able to define the objects and classes.. This course contains the basic features of Object Oriented Progamming using C++. This course is aimed for providing a complete knowledge of different functions, techniques and algorithms used in C++ to address different practical problems. This definitely creates interests and motivations in students and in other way, this course will fetch a large scope of job and research opportunities in India as well abroad.

Pre-requisites: C programming, Object Oriented Programming.

Course Outcomes (CO):

- 1. The students should be able to understand the basic concept of Object oriented programming
- 2. The students should be able to understand the basic features and syntaxes of C++.
- 3. The students should be able to write programs using the different concepts of object oriented programming.
- 4. The students should be able to understand file handling and input output operation
- 5. The students should be able to apply the concept of OOPs to solve some practical problems

Module	Topics	Hrs	CO
Module 1:	Procedure-Oriented programming, Object-oriented programming,	10	1
Overview of OOP a	benefits, features and Application of OOP.		
using C++	Simple C++ program, Tokens, Keywords, constants, Basic data		
Syntaxes of C++ and Basic	types, User defined data types and Derived data types, Function		
Procedure-	prototyping, Call by reference, analyzing simple programs.		
Oriented program using C++			
Module 2:	Classes, Class scope, Nested classes, Member functions, Nesting of	11	2
	member functions and basic Object-Oriented features		
Concepts of OOP	(encapsulation), overloading, namespace and using structure and		
in C++	union, Array of objects, Member functions, Friend function,		
	Pointers to members, Constructors, Copy Constructors, Destructors.		
Module 3:	Generalization / Specialization of Object Modeling in C++ Pointer, Virtual Functions, Static and Dynamic Binding, pointers to objects,	9	3
Inheritance	this pointer, pointers to derived class, Abstract class, Friend function, Virtual functions, Method Overloading, Method Overriding		
ommuni	Page 74 of	175	

Polymorphism

Module 4:	C++ cast operators; C++ Exceptions & standard exception classes,	9	4
Type Casting,	Function and Class templates and using STL like containers.		
Exceptions,			
Templates&STL			
Module 5:	Classes for file stream operations, Accessing files, Sequential	9	5
Files handling	I/O operations, Random access, Command- line arguments, Exception handling (throw, try, and catch).		

Text Books:

- 1. Robert Lafore, *Object-oriented programming in C++*, 4e ,Sams Publishing, 2001.
- 2. Bjarne Stroustrup, The C++ Programming Language, 4e, Pearson education, edition,2013.

Reference Books:

- 1. Cay Horstmann, *Computing Concepts with C++ Essentials*, 2e, John Wiley & Sons, 1997.
- 2. John Hubband, *Programming with C++*,2e., Schaum's outline series, McGraw Hill, 2017

Internet of Things

Questions to be set: 05 (All Compulsory)

Course Objectives: The course is focused to give a vision and introduction to IoT Technology. This course will provide the knowledge of IoT Gateway, Cloud and its access. It also highlights the basic architecture of BIG DATA solution, Radio Frequency Identification system, Near-field Communication system in relevance to the IoT market perspective. The students will be able to grow the expertise in data and knowledge management methodologies after pursuing this course. The course is dedicated towards the realization of 'Connected Society': Smart Cities and Smart World. The future Industry trends is highly inclined with the aspect of the outcomes of this course. So, after completion of this course, the students will be able to get a huge scope of jobs in this domain.

Pre-requisites: Knowledge of basic signals and communication.

Course Outcomes(CO):

CO1: The students should be able to explain the basic features and requirements of IoT. CO2: The students should be able to establish the need of Big Data solution strategy in corporate.

CO3: The students should be able to explain various short range communication protocols used for different IoT applications.

CO4: The students should be able to explain various long and medium range communication protocols used for different IoT applications.

CO5: The students should be able to elucidate how IoT can be deployed in different application scenarios.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: IoT basics	in class	Introduction to Internet of Things, Physical Design of IOT, Logical Design of IOT, IOT Enabling	10	1
		Technologies, IOT Levels. IoT system components, IoT Devices, IoT Gateways, Cloud Access, Cloud Components		
Module 2:	in	What is Big Data (BD) Modern Corporate's need	8	2
Big Data	class	of BD Strategy. Main components of Big Data	U	-
8		Solution. Basic Architecture of BD Solution.		
		Introducing Hadoop.		
	**Assignment	Case study		2
	Topics			
Module 3:	in	Introduction to: Near-field communication (NFC);	12	3
Short-Range	class	Radiofrequency identification (RFID) Thread -		
Wireless		Network protocol based on the IEEE 802.15.4		
Communication		standard, similar to ZigBee, Bluetooth low energy		
		(BLE); Z-Wave; Body area Networks - BAN,		
		Light-Fidelity (Li-Fi);		
	**Assignment	Use cases		3

Topics

Page **76** of **175**

Module 4: 5G based IoT Under Medium and LongRange Wireless	in class	Overview on 6LoWPAN, Low Power Wide Area 10 Networks (LPWANS), Overview On 5G IOT, Low- power Consumption, Enhanced Coverage, Ultra- reliable Low-latency Communications, Massive Number of Devices. IoT Networking Protocols:	4
	**Assignment Topics	MQTT, CoAP AMQP, XMPP	4
Module 5:	in class	Smart Home, Connected Vehicle, Smart 8	5
fowards 'connected	**Assignment	Agriculture, Smart Healthcare, Smart Grid Case study	5
Society': Smart Cities and Smart World	Topics		

- 1. Pethuru Raj and Anupama C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases, 1/e, CRC Press, Taylor & Francis Group, 2017.
- 2. Vijay Madisetti, ArshdeepBahga, Internet of Things A Hands-On- Approach,2014, ISBN:9780996025515.
- 3. Hongjian Sun, Chao Wang, Bashar I. Ahmad, From Internet of Things to Smart Cities: Enabling Technologies, CRC Press, Taylor & Francis Group, 2018.

Reference Books:

- 1. Adrian McEwen, Designing the Internet of Things, Wiley Publishers, 2013, ISBN: 978-1-118-43062-0.
- 2. Daniel Kellmereit, The Silent Intelligence: The Internet of Things. 2013, ISBN 0989973700.
- 3. NB-IoT : Enabling New Business Opportunities- Building A Better Connected World, Huawei.
- 4. http://bookgedebook.tk/downloads/nb-iot-enabling-new-business-opportunitieshuawei.pdf.
- Mishra S., Bhutia S.D., Akhtar N., Dhar S., "Cloud-Based Multilayer Telemedicine Architecture: A Case Study" in: Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 537. Springer, Singapore, Bera R., Sarkar S., Singh O., Saikia H. (eds) (2019)

COMPUTER ORGANIZATION AND ARCHITECTURE

Questions to be set: 05 (All Compulsory)

Course Outcomes: After Completion of the course, students will be able:

- 1. To demonstrate an understanding of the organization of a computer system.
- 2. To identify instruction sets, processor structure and its functions.
- 3. To have knowledge on memory system and I/O organization.
- 4. To explain the working of a control unit and its operations.
- 5. To discover parallelism and features of parallel processing and superscalar operations.

Pre-requisites: Basic of Digital Systems.

Module	Topics	Hrs	CO
Module 1: Introduction: Overview of Computers	Historical background, Classification of computers. Basic Structure, Fundamental Units, Basic Operational Concepts, Bus Structure, RISC and CISC processors, Introduction to RISC V processor, SHAKTI Processor, VIKRAM Processor, ARM Processors.	10	1
Module 2: Computer Arithmetic and Processor Basics	Addition and Subtraction, Multiplication Algorithms (Booth's Algorithm), Division Algorithms, Floating point number representation, Floating point arithmetic and unit operations, Pipelined ALU. Processor architecture and organization, Processor operation, Register set, Stack organization, Interrupts and subroutine	10	2
Module 3: Memory System and I/O Organization	Memory classification, memory characteristics and hierarchy, Cache memory, main memory Secondary memory, Virtual memory. Basic I/O structure of computers, Asynchronous data communication, Serial and parallel communication, Programmed I/O Interrupt driven I/O, Interrupt controller, DMA controller, Device drivers, Standard I/O buses (USB, SCSI, IEEE488), Bus arbitration I/O processor	10	3
Module 4: Microprogramming and Micro Architecture Control Unit Operation	Need of data flow control, data paths, control signal requirements, microinstructions, instruction cycles, hardwired control, programmed control, sequencing and execution of microinstructions, utilizing system clock. Control Unit, Micro-operations, control of the processor, hardware implementation.	10	4
Module 5: Pipelining, Parallel Processing and Superscalar Operation	Pipeline strategy, pipeline performance, Pipeline Hazards, Data hazards, Control hazards, Structural hazards, Control and data paths. Flynn's classification, Network topologies, Program parallelism, shared variables and critical section, cache coherence, superscalar operation.	8	5

1. Computer Architecture & Organization, William Stallings, 2008, Pearson Education.

Reference Books:

- 1. Computer Architecture & Organization, Nicholas Carter & Raj Kamal, 2009, McGraw Hill.
- 2. Computer Organization, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, 1996, McGraw Hill.

Program Elective-2

Page 80 of 175

VT206A3

Computer Networks

Questions to be set: 05 (All Compulsory)

Course Objectives:

- 1. Identify the different approaches towards computer networking
- 2. Compare and contrast the underlying technologies and
- 3. Problem solving based on case studies.

Pre-requisites: Probability **Course Outcomes:**

Students can be able to:

- 1. Analyze different types of network topologies.
- 2. Inspect error detection and correction in data link layer and analyze the working of protocols involved in this layer.
- 3. Build the skills in classless and classful addressing and sub-netting.
- 4. Identify the Client/Server Paradigm and the protocols involved in this layer.
- 5. Analyze the applications protocols and know the actual application implementation in the areas such as security, banking sector and novel area of interest.

Module	Topics to be	Topics	Hrs	CO
	covered			
Module 1:	In class	Network Topology, The Layered Architecture (OSI, TCP/IP),	10	1
Introduction	Topics	Peer-to-Peer Processes, Physical Addresses, Logical Addresses,		
to computer		Port Addresses, Basics of Internet, Switching circuits.		
networks and	Assignment	Compare the OSI and TCP/IP architectures.		1
layered	Topics			
architecture				
Module 2:	In class	Error Detection and Correction: Checksum-One's	10	2
Data Link	Topics	Complement, Internet Checksum. Data Link Control-Framing:		
Layer		Fixed-Size Framing, Variable-Size Framing. Flow Control,		
-		Error Control, Private addressing.		

Data Link Control: Noiseless channels: Simplest Protocol, Stop-and-Wait Protocol.

		Noisy channels: Stop-and-Wait ARQ, Go-Back- N ARQ, Selective Repeat ARQ, Piggybacking.		
		Multiple Access: Random access-ALOHA, slotted ALOHA, CSMA, CSMA/CD and CSMA/CA.		
	Assignment Topics	Problems related to Go-back-N ARQ and Selective repeat ARQ		2
Module 3: Network Layer	In class Topics	Logical Addressing: IPv4 addresses, Address Space, Notations, Classful Addressing, Classless Addressing, IPv6 addresses Structure, Address Space, Subnets.	11	3
		Internet Protocol: Internetworking.		
		Address Mapping, Error Reporting and Multicasting: Mapping Logical to Physical Address, ARP, ICMP, IGMP.		
		Delivery, Forwarding and Routing: Unicast routing protocols, Intra and Inter-domain Routing, Distance Vector Routing, Dijkstra's Algorithm, Shortest Path Algorithm, Link State Routing-OSPF, Path Vector Routing.		
	Assignment	Problems related to Sub-netting. Explain the Dijkstra's		3
	Topics	algorithm		
Module 4: Transport Layer	In class Topics	Process to process delivery: Client/Server Paradigm, Multiplexing and Demultiplexing, Connectionless Versus Connection-Oriented Service, Reliable Versus Unreliable.	9	4
		UDP: Well-Known Ports for UDP, User Datagram, Checksum, UDP Operation, Use of UDP.		
		TCP: TCP Services, TCP Features, Segment, ATCP Connection, Flow Control, Error Control, Congestion Control, 3		
		Page 82 of : Page 82 of :	175	

	Process-to-Process Delivery: UDP, TCP.		
	Congestion Control: Open-Loop Congestion Control, Closed-		
Assignment Topics	Explain the concept of UDP and TCP		4
In class Topics	Protocols SMTP, POP, FTP, HTTP. Recent Trends in Protocols, Introduction to mobile IP, Basics of Wi-Fi, Basics of Network Security Authentication, firewalls, digital signatures, and certificates	8	5
Assignment Topics	Study the application in Network Security Authentication		5
	Assignment Topics In class Topics Assignment Topics	Process-to-Process Delivery: UDP, TCP.Congestion Control: Open-Loop Congestion Control, Closed- Loop Congestion Control, Three-way-Handshake.Assignment TopicsExplain the concept of UDP and TCPIn class TopicsProtocols SMTP, POP, FTP, HTTP. Recent Trends in Protocols, Introduction to mobile IP, Basics of Wi-Fi, Basics of Network Security Authentication, firewalls, digital signatures, and certificatesAssignment TopicsStudy the application in Network Security Authentication	Process-to-Process Delivery: UDP, TCP.Congestion Control: Open-Loop Congestion Control, Closed- Loop Congestion Control, Three-way-Handshake.Assignment TopicsExplain the concept of UDP and TCPProtocols SMTP, POP, FTP, HTTP. Recent Trends in Protocols, Introduction to mobile IP, Basics of Wi-Fi, Basics of Network Security Authentication, firewalls, digital signatures, and certificates8Assignment Study the application in Network Security Authentication Topics8

1. Andrew S. Tanenbaum, David J. Wetherall. Computer Networks, 5e, Pearson 2014

2. Forouzan, A. Behrouz. Data communications & networking, 2e, Tata McGraw-Hill Education 2006.

Reference Books:

1. Stallings, William. Local Networks, 3e, Prentice Hall PTR, 1990.

2. James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach, 6e, Pearson, 2012.

ELECTRONIC INSTRUMENTATION AND MEASUREMENTS

Questions to be set: 05 (All Compulsory)

Course Objectives: To understand the basic concept of measurement and various bridges and their applications. To gather concept on various measuring instruments. To learn various display devices and recorders. To acquire the concepts of transducer for the application of various non electrical quantities. To learn the concept of data transmission and telemetry. Pre-requisites: Knowledge in statistics, basic of DC bridges, electronic devices and mathematics.

Course Outcomes(CO):

After successful completion of this course, students will be able to:

CO1 Summarize the basic measurement concepts CO2 Analyze the concept of various bridges and their applications CO3 Describe various electronic measuring instrument, display devices and recorders CO4 Explain the knowledge of sensors and transducers CO5 Discuss on telemetry and tele-control

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: <art of<br="">Measurement></art>	in class	Static and Dynamic Characteristics of Measuring Devices, Measurement Errors: types and Statistical Analysis.	7	1
incusur chicht/	**Assignment Topics	Numerical on Static Characteristics and Statistical Analysis.		1
Module 2: < Bridges and Their Applications>	in class	Difference between DC and AC bridge, Wheatstone Bridge, Maxwell Bridge, Maxwell Wein Bridge, Andersons Bridge, Schering Bridge, De-Sauty's Bridge, Applications of AC bridges.	9	2
	**Assignment Topics	Numerical on various AC bridges		2
Module 3: Electronic Measuring Instruments and	in class	Multimeter, Digital Voltmeter (DVM), Cathode Ray Oscilloscopes, Digital Storage Oscilloscopes and Spectrum Analyzer, Light Emitting Diode, Liquid Crystal Devices, Data Acquisition	10	3
Display Devices	** A ssignmont	System and Recorders. Numerical on CPT, DVM and LED		3
Devices>	Topics	Numerical on CK1, D VIVI and LED		5
Module 4: Sensors and	in class	Definition of sensors and Electrical transducer, Basic requirements of a transducer, Classifications of transducers, Stroin: Stroin Course & Piezo electric Transducers	12	4
Non-electrical		Temperature: Thermocouple & RTD. Pressure: Bourden Tube		
Quantities Using		& Diaphragm, Flow: Rotameter &Orifice, Liquid Level:		
Transducers>		Capacitive and Ultrasonic Level Detector, LVDT		

	**Assignment Topics	Numerical on various Transducers		4
Module 5: <data< b=""> Transmission and Telemetry></data<>	in class	Method of data transmission, general telemetry system, types of telemetry system, Land line telemetry, voltage T.S., current T.S., Position T.S., land line telemetry, Feedback system, R.F. telemetry recent telemetry systems	10	5
	**Assignment Topics	Recent study on telemetry systems		5

1. A. K. Sawhney, A course in Electrical and Electronic Measurements and Instrumentation, 19e, Dhanpat Rai and Co.(P) Ltd., 2011. 2. Helfrick & Cooper, Modern Electronic Instrumentation & Measurement Techniques, 1e, Prentice Hall of India, 2008.

Reference Books:

1. P. H. Mansfield, Electrical Transducers & Industrial measurements, 1e, Butterworth-Heinemann, 1973.

2. H. S. Kalsi, Electronic Instrumentation, Tata McGraw-Hill, 2002

VT208A3

Data Structure

Questions to be set: 05 (All Compulsory)

Course Objectives: To provide the knowledge of basic data structures and their implementations. To understand importance of data structures in context of writing efficient programs. To develop skills to apply appropriate data structures in problem solving.

Pre-requisites: Basic knowledge on C programing.

Course Outcomes (CO):

After successful completion of this course, students will be able to:

- Explain the basic concepts of data structures and algorithms. CO1
- CO2 Apply basic techniques of stacks and queues
- CO3 Describe implementation of linear data structures such as linked lists
- Summarize non-linear data structures such as trees and graph CO4
- CO5 Extract concepts about searching and sorting techniques.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to Data	in class	Data and data structure concept; Different Data Type; Algorithms and programs. Algorithm efficiency and analysis, time and space analysis of algorithms – order notations.	9	1
Structure	**Assignment Topics	Basic C programs using Arrays		1
Module 2: < Stack >	in class	Stack and its implementations using array, Concept of queue, circular queue and de-queue. Implementation of linear and circular queue using array, Applications of stack and queue.	10	2
	**Assignment Topics	Push, Pop, Enqueue and Dequeue programs using C		2
Module 3: < Queue >	in class	Singly circular and doubly linked list, operations using single linked list, linked list representation of polynomial and applications.	9	3
	**Assignment Topics	Insertion and Deletion in Singly linked list programs using C		3
Module 4: < Tree and Graph>	in class	Tree representation using array and linked list. Binary trees - binary tree traversal, Creation, insertion, deletion and searching operation of binary search tree. Insertion, deletion with examples of Height balanced binary tree – AVL tree. Terminology and representations: Introduction, Definition and terminology, Graph representations, Traversals, Connected components and spanning trees, Shortest path problem, Dijkstra's algorithm.	10	4
	**Assignment Topics	Creation, insertion, deletion and searching operation of binary search tree programs using C		4
	•	Sines & Communica Juli Page 86 of	175	

Page 86 of 1/5

Module 5:	in class	Sorting: Bubble, Insertion, merge, Heap sort and quick sort, Radix	10	5
<searching< td=""><td></td><td>sort. Searching: Linear, Binary search, Comparison of different</td><td></td><td></td></searching<>		sort. Searching: Linear, Binary search, Comparison of different		
and Sorting>		methods. Hashing technique: Hash tables, Different hashing		
		functions, Overflow handling, Methods for collision handling,		
		Theoretical evaluation.		
	**Assignment	Different sorting and searching programs using C		5
	Topics			

- (i) S. Lipschutz, "Data Structures" Revised 1st edition, Mcgraw Hill, February, 2018.
- (ii) Debasis Samanta, "Classic Data Structures", 2nd edition, PHI Learning Private

Limited, 2012.

Reference Books:

- (i) Ellis Horowitz, Sartaj Sahni, Susan Anderson-freed, "Fundamentals of Data Structures of C", 2nd edition, Orient black swan, 2008.
- (ii) Robert L. Kruse, Bruce P. Leung, "Data Structures and Program Design in C", 1st edition, Pearson, 1990.

Advanced Electronic Devices

Questions to be set: 05 (All Compulsory)

Course Objectives: The course is designed to teach the physical principles and operational characteristics of advanced semiconductor electronic devices with emphasis on metal-oxide systems, high-electron mobility, and field-effect transistors. Topics also include quantum point contact and tunneling devices.

Pre-requisites: Electronic Devices and components.

CO1: analyze the issues in scaling MOS transistor. CO2: explain the controlling mechanism of short channel effect. CO3: explain the working principle of advanced junction diode. CO4: analyze and design high speed devices. CO5: explain and design of low dimensional structure devices. Module Topics to be covered Module 1: in Issues in scaling MOS transistors, Channel length modulation, 10 MOS Scaling class mobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL), **Assignment Topics Gate induced drain leakage (GIDL) Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Controlling of class reduction, High-k dielectric.	s CO 1
CO2: explain the controlling mechanism of short channel effect. CO3: explain the working principle of advanced junction diode. CO4: analyze and design high speed devices. CO5: explain and design of low dimensional structure devices. Module Topics to be covered Module 1: in In Issues in scaling MOS transistors, Channel length modulation, 10 MOS Scaling class mobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL), **Assignment Topics Gate induced drain leakage (GIDL) Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Controlling of class reduction, High-k dielectric.	s CO 1
CO3: explain the working principle of advanced junction diode. CO4: analyze and design high speed devices. CO4: analyze and design of low dimensional structure devices. CO5: explain and design of low dimensional structure devices. Module Topics to be covered Topics Module 1: in Issues in scaling MOS transistors, Channel length modulation, 10 mobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL), **Assignment Topics Gate induced drain leakage (GIDL) Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 mobility carrier.	s CO 1
CO4: analyze and design high speed devices. CO5: explain and design of low dimensional structure devices. Module Topics to be covered Module 1: in Issues in scaling MOS transistors, Channel length modulation, 10 MOS Scaling class mobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL), **Assignment Topics Gate induced drain leakage (GIDL) Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Controlling of class reduction, High-k dielectric.	s CO 1
CO5: explain and design of low dimensional structure devices. Module Topics to be covered Topics H: Module 1: in Issues in scaling MOS transistors, Channel length modulation, nobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL), H: Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Controlling of class reduction, High-k dielectric. 10	s CO 1
Module Topics to be covered Topics History Module 1: in Issues in scaling MOS transistors, Channel length modulation, class 10 MOS Scaling theory class mobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL), History **Assignment Topics Gate induced drain leakage (GIDL) 6 10 Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Controlling of class reduction, High-k dielectric. 10	s CO 1
Module 1:inIssues in scaling MOS transistors, Channel length modulation, 1MOS Scaling theoryclassmobility variation, velocity saturation, Punch through, Hot carrier effect, drain induced barrier lowering (DIBL),**Assignment TopicsGate induced drain leakage (GIDL)Module 2:inMobility booster-strained silicon technology, Gate leakageModule 2:inMobility booster-strained silicon technology, Gate leakage	1
**Assignment Topics Gate induced drain leakage (GIDL) Module 2: in Mobility booster-strained silicon technology, Gate leakage 10 Controlling of class reduction, High-k dielectric. 10	
Module 2:inMobility booster-strained silicon technology, Gate leakage10Controlling ofclassreduction, High-k dielectric.	1
Controlling of class reduction. High-k dielectric.	2
about showned ** A grignment Dely deplotion elimination Matel acts	C
effect Topics	2
Module 3:inResonant tunneling diode (RTD).8A draw and a shareshare	3
Advanced class Junction **Assignment None Diodes Topics	3
Module 4:in classMetal-semiconductor field effect transistors (MESFET), Modulation10High Speeddoped heterostructures MODFET, High Electron Mobility Transistor10Devices(HEMT)Multi gate transistor: double gate transistors	4
**Assignment FinFET and Surround gate FET. Topics	4
Module 5:in classHomo-structure, Hetero-structure, Quantum tunnelling, Density of states in 2D, 1D, 0D structure, Quantum well, Quantum electron	5
dimensional transport through nanostructure devices: Coulomb Blockade. structure **Assignment devices Topics	5

of Elen

SMIT

Pedal *

1. Streetman and Banerjee, Solid State Electronic Devices, Paperback – 2015.

2. Donald Neamen and Dhrubes Biswas, Semiconductor Physics and Devices, Paperback – 1 Jul 2017.

3. S. M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3ed Paperback – 2008. Reference Books:

1. Charles Kittel, Introduction to Solid State Physics, Wiley; Eighth edition (2012).

Program Elective-3

FPGA ARCHITECTURE

Questions to be set: 05 (All Compulsory)

Course objectives:

The course will introduce the participants to understand the architecture of FGPA.

Prerequisite: Basic of memory and processors.

Course outcomes

On completion of the course, the student will be able to:

ment of Elen

SMIT

* Depar

- 1. comprehend low and programmable devices
- 2. understand Spartan 6 basics
- 3. use Virtex 5 clock sources and FIFO. Comprehend various I/O standards.
- 4. use memory, and DSP blocks in complex. Comprehend SerDes.
- 5. comprehend JTAG. Distinguish RISC-based soft processors from Xilinx, and Altera.

Module	Topics to be covered	Topics	Hrs	CO
1	In Class	Designing with programmable logic devices:	8	1
		Read only memories, programmable logic array (PLA), programmable array logic (PAL), programmable logic devices (PLD), Skew, setup time, hold time.		
		Designing with FPGA		
		Xilinx 3000 series FPGAs, programmable interconnects, Xilinx 4000 series FPGAs. Altera Flex 8000 FPGAs		
	Assignment			
	Topics:			
2	In Class	Spartan6 architecture	8	2
		Spartan 6 device features- 6 input LUT, slice, single port RAM, Dual port RAM, ROM, Distributed RAM, 32×6 , 64×1 , 128×1 , distributed RAM timings, shift registers, multiplexers, interconnect, PLL, DCM, DSP slice.		
	Assignment			
	Topics:			
3	In Class	Virtex 5 architecture	8	3
		is & Commun		

Clock resources- global clocks, regional clocks, clock buffer, clock gating, clock tree, clock De-skew, True Dual port RAM, Write modes, FIFO architecture, empty flag, almost empty flag, almost full flag, cascading FIFOS, connecting FIFOs in parallel, designing large multiplexer 4×1 , 8×1 , 16×1 . Control impedance, I/O primitives, I/O supported standards, LVDS.

Assignment

Topics:

4 In Class Staratix V architecture

ALM block diagram, ALM operating modes, ALM in arithmetic mode, types of embedded memory, control clocking, memory features, memory modes, DSP block features, optional modes, DSP block architecture in 27×27 mode, independent complex multiplier mode, I/O features mixing voltage referenced and non voltage referenced standard I/O standards. Dynamic OCT, LVDS Serdes block diagram and features, Differential receiver block diagram and features.

Assignment

Topics:

5 In Class SOFT PROCESSORS

JTAG, programming through JTAG, IEEE 1149.1 boundary scan testing, programmable power technology, features of soft processors NIOS-II, Microblaze

Assignment

Topics:

Books

- 1. Charles H Roth Jr "Digital systems design using VHDL", second edition, 2008.
- 2. Spartan 6 family overview.
- 3. Virtex 5- User guide.
- 4. Stratix V device handbook.
- 5. NIOS-II, Microblaze features-Altera, Xilinx.

8

4

5

4

VT302A3

DIGITAL SIGNAL PROCESSING

Questions to be set: 05 (All Compulsory)

Course Objectives: To make students familiar with the most important methods in DSP, including digital filter design, transform-domain processing and importance of Signal Processors. To make students aware about the meaning and implications of the properties of systems and signals.

Pre-requisites: Mathematics, Signals and Systems.

Course Outcomes(CO):

After successful completion of this course, students will be able to:

CO1 Analyze basic signals, systems, sampling and DTFT

CO2 Analyze the frequency response of discrete time domain signals using DFT and FFT

CO3 Design analog and digital IIR filters for given specifications

CO4 Design FIR filters for given specifications

CO5 Realize digital systems based on IIR and FIR filter structures

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Review of signals and systems	in class	Basic signals, Importance of impulse response, Types of systems, Sampling, Discrete Time Fourier Transform(DTFT) and its properties.	6	1
	**Assignment	Practice Numerical based on DTFT		1
	Topics			
Discrete Fourier Transform(DFT)	in class	Definition of DFT, Properties of DFT: Linearity, Circular shift of a sequence, Symmetry properties, Circular convolution, Linear Convolution using DET. Palation among 7 Transform	8	2
Transform(FFT)		Computation of DFT, FFT algorithms-Divide and conquer approach, Decimation in time and Decimation in frequency (radix-2 only), Computation of FFT, Signal Flow Graph.		
	**Assignment	Practice Numerical based on DFT, IDFT, FFT		2
	Topics			
Analog and Digital IIR filters	in class	Butterworth, Chebyshev (T-I and T-II) and Frequency transformation, Mapping from analog domain to digital domain using Impulse invariance method, Bilinear transformations and Approximation of derivative; Design of IIR filters from analog filters.	8	3
	**Assignment	Practice Numerical based on IIR filter designing		3
	Topics			
Digital FIR filters	in class	Comparison between IIR and FIR filter; Different types of windows: Rectangular, Bartlett, Hanning, Hamming and Blackman windows; Design of FIR filters using windows;	8	4
	ics & Commun	IN MANINAL DA		

		Design of FIR filters using Frequency sampling method; Linear phase FIR filter	
	**Assignment Topics	Practice Numerical based on FIR filter designing	4
Realization of Digital Filter	in class	Comparison between analog and digital filter; Basic IIR filter 6 structures: Direct forms (I&II), Cascade and parallel realizations. Basic FIR filter structures: Direct form FIR structures	5
	**Assignment Topics	Practice Numerical based on digital filter designing	5

1. John G. Proakis and Dimitris G. Manolakis, Digital Signal Processing, 4e, Pearson, 2007.

2. A V Oppenheim and R.W Schafer, Digital Signal Processing, 1e, Pearson Education, 2015.

3. P. Ramesh Babu, Digital Signal Processing, 4e, Scitech, 2010.

Reference Books:

1. Sanjit K Mitra, Digital Signal Processing: A Computer based Approach, 4e, Mcgraw Hill Education, 2013.

2. Tarun Kumar Rawat, Digital Signal Processing, 2e, Oxford University Press, 2015.

VT303A3

VLSI PHYSICAL DESIGN

No. of questions to be set: 1 from each CO No. of questions to be answered: Five

Objectives: The course will introduce the participants to the basic design flow in VLSI physical design automation, and the basic data structures and algorithms used for implementing the same. The course will also provide examples and assignments to help the participants understand the concepts involved and appreciate the main challenges therein.

Pre-requisites: Digital electronics, VLSI

Course outcomes:

On completion of the course, the student will be able to:

- 1. understand partitioning, floor planning, and placement.
- 2. familiar with the routing and clock design.
- 3. interpret statistic timing analysis and timing closure.
- 4. realize the concept of physical synthesis.
- 5. understand the low-power design.

Module 1	Topic Introduction	Hrs 8	CO 1	PO 1,2
2	Introduction to physical design automation, VLSI design styles, partitioning, floor planning, floor planning algorithms, pin assignment, placement Routing	8	2	1,2
	Grid routing, global routing, detailed routing, clock designing, clock network synthesis, power, and ground routing.			
3	Static timing analysis and timing closure	8	3	1,2
	Time closure, timing-driven placement, timing-driven routing, physical synthesis, performance-driven design flow, and timing optimization.			
4	Interconnect modelling and layout compaction	8	4	1,2
	Interconnect modelling, design rule check, layout compaction.			
5	Low power design technique	4	5	1,2
	Technique to reduce power, gate-level design for low power, other low-power design techniques, algorithmic level			

techniques for low power design

Books:

- 1. K. Golshan, *Physical design essentials: An ASIC design implementation perspective*. New York, NY: Springer, 2010.
- 2. S. M. Sait and H. Youssef, *Vlsi Physical Design Automation: Theory And Practice: Theory and Practice*. Singapore, Singapore: World Scientific Publishing, 1999.
- 3. J. Bhasker and R. Chadha, *Static timing analysis for nanometer designs: A practical approach*, 2009th ed. New York, NY: Springer, 2011.

Java Programming

Questions to be set: 05 (All Compulsory)

Course Objectives: The Java Programming Language course provides students with a solid foundation for programming with JAVA. It also highlights the creation of graphical user interfaces (GUIs), exceptions, file input/output (I/O), and threads; and network programming.

Pre-requisites: Object Oriented Programming.

Course Outcomes (CO):

- 1. Use the syntax and semantics of java programming language and basic concepts of OOP.
- 2. Develop reusable programs using the concepts of inheritance, polymorphism and interfaces.
- 3. Transfer reusable programs using the concepts Strings handling, Interfaces and Packages.
- 4. Apply the concepts of Multithreading and Exception handling to develop efficient and error free codes.
- 5. Design event driven GUI and web related applications which mimic the real word scenarios.

Module	Topics	Hrs	CO
Module 1:	Evolution and features of java, Overview of java, Two control statements, Lexical issues, Data types, Variables and arrays,	8	1
Introduction to Java	Literals, Variables, Type conversion and casting, Type promotion in expression, arrays, Operators, Bitwise operators, Relational operators, Boolean and logical operators, Assignment Operators, The '?' operator, Operator precedence, JAVA statements.		
Module 2:	Class fundamentals, Declaring objects, Assigning object	8	2
Introducing classes and Methods	reference Variables, Introducing methods, Constructors, 'this' keyword, Garbage collection, The finalize() method, stack class.		
	Overloading methods and constructors, using object as parameters, Argument passing, Returning objects, Recursion, Access control, Static methods, Nested and inner classes, Command line orgument		
Module 3:	String constructors, String length, Special string operators,	8	3
Strings handling,	Character extraction, String comparison, String searching,		
Interfaces and	String modification, Changing case of characters within a		
Packages	string, Compression and String buffer, String builder.		
	Inheritance, Basics of inheritance, Types of inheritance,		

Using super keyword, method overriding, Dynamic method dispatch, Abstract class, Using final with inheritance, The object class, Defining and implementing interface, Extending interfaces, Nested interfaces, Applying interfaces, Defining and creating packages, Access protection, Importing packages. Exception Handling ,Fundamentals, Exception types, Uncaught exceptions, Using try and catch, Multiple catch clauses, Nested try statements, Throws, Finally, Java's built in exceptions, Creating own exception classes.

Module 4:Java I/O classes and interfaces, The stream classes, Byte
streams, The character streams, The console class, File class,
Byte-stream class, Random access files. Thread basics, Java's
thread model, Thread priorities, Synchronization, Messaging,
Thread class and runnable interface. The main thread,
Creating a thread, Creating multiple threads, Interthread
communication, Suspending/resuming and stopping threads.

Module 5: Networking basics, The networking classes and interfaces, 4 The InetAddress class, Inet4Address, TCP socket, URL, URLConnection, HTTP/URL Connection, TCP/IP server Network sockets, Datagram socket and Datagram Packet. The applet programming and class, Repaint(), The HTML applet tag, Passing Parameter to Event Based applet, Event handling, Using delegation event model, Programming Abstract Window program, Displaying information within a window, AWT controls.

Textbooks:

1. Programming With JAVA, 2nd Edition, E. Balaguruswami and TMH Publication.

2. Java: The Complete Reference, 7th Edition, Herbert Scheldt, TMH Publication.

Reference Books:

1. The Java Programming Language: K.Arnold and J. Gosling.

2. Professional java Server Programming: Allamaraju.

3. JAVA2: The Complete Reference, 3rd Edition, Patrick Naughton and HarbertSchildt, TMH Publication.

4. Internet & Java Program: R.Krishnamoorthy& S. Prabhu, New Age Internet Publisher.

4

5

8

VT305A3

Database Management Systems

Questions to be set: 05 (All Compulsory)

Course objectives

To provide an introduction of DBMS and their use, be familiar with the basic DBMS architecture, components, and interfaces, have experience using at least one modern Database Management System.

Pre-requisites

Basic knowledge of mathematics.

Course outcomes

ent of Electron

On completion of the course the student will be able to:

1. Define fundamental elements of a relational database management system

2. Describe entity-relationship diagrams to represent simple database application scenarios.

3. Interpret the basic concepts of relational data model, and Map Entity-relationship model, Relational database design, relational algebra, and database language SQL

4. Connect database using SQL

5. Relate database using NoSQL

Module	Topics to be	Topics	Hrs	CO
	covered			
Module 1:	In class	DBMS: Characteristics, Advantages, Architecture. Database	8	1
Introduction	Topics	concept and architecture, Data models, Instances and schema, Database languages, Database manager, Database administrator,		
to Database		Database users, Concept of centralized database management and		
Management Systems	Assignment	distributed database system.		
	Topics		0	2
Module 2:	In class	entity sets, attributes types and keys, Entity Relationship (ER) diagram, Type role and structural constraints, Enhanced entity- relationship (EER), Object modelling, Specialization and generalization, Modelling of union types, Data models: Definition, Purpose and Types, Hierarchical models, Network model, Relational model	8	2
Data modelling	Topics			
	Assignment			
	Topics			
Module 3:	In class	Database design process, Relational database design, Relation	8	3
	Topics	schema, Functional dependencies, minimal covers, Normal forms, Multivalued dependencies, Converting EER diagrams to relations, Effect of de-normalization on database performance		
SMIT SMIT		Page 99 of 1	75	

Database	Assignment			
design	Topics			
Module 4:	In class	Query-by-example (QBE), Introduction to SQL, Use of some	8	4
Database	Topics	special data types, Overview of SQL 92, Basic queries in SQL, Advanced queries in SOL. Functions in SOL. Basic data retrieval.		
query		Aggregation, Categorization, Updates in SQL, Embedded SQL and		
languages		4GLs, Procedural extension to SQL: PL/SQL. Introduction to SOLite-Android Database.		
(SQL)	Assignment			
	Topics			
Module 5:	In class	API-connection and operations APK. An overview of NoSQL,	4	5
Database	Topics	Characteristics of NoSQL, Advantages and challenges of NoSQL, NoSOL storage types, Case study of MongoDB.		
query	Assignment			
languages	Topics			
(NoSQL)				

Books

Text Books:

- a) Elmasri and Navathe: "Fundamentals of Database Systems" Addison Wesley, 5th Edition.
- b) Silberschatz, Korth, Sudarshan, "Database System Concepts" McGraw-Hill, 4th Edition.

Reference Books:

- a) Thomas Connolly, Carolyn Begg, "Database Systems A Practical Approach to Design, Implementation and Management", Pearson Education.
- b) Jefrey D. Ullman, Jenifer Widom, "A First Course in Database Systems", Pearson Education.
- c) Bipin C Desai, "An Introduction to Database Systems", Galgotia.
- d) Atul Kahate, "Introduction to Database Management Systems", Pearson.
- e) Ian Robinson, Jim Webber, Emil Eifrem,"Graph Databases", O'Reilly Media.
- f) Gaurav Vaish, "Getting started with NoSQL", Packt.

Program Elective-4

ADVANCED SEMICONDUCTOR DEVICES AND FLEXIBLE ELECTRONICS

Questions to be set: 05 (All Compulsory)

Course objectives:

The course will introduce the participants to the operation and application of various advanced semiconductor devices and flexible electronics.

Prerequisite: Basic semiconductor physics and devices.

Course outcomes

On completion of the course, the student will be able to:

- 1. understand the operation of PN junction, bipolar transistor, and related devices.
- 2. understand the operation of MOSFET and related devices.
- 3. use microwave diodes, quantum effect devices, and hot-electron devices.
- 4. understand the photonic devices.
- 5. have an idea of flexible electronics.

Module	Topics to be	Topics	Hrs	CO
	covered			
1	In Class	PN junction, Bipolar transistor, and related devices	9	1
		PN junction: Thermal equilibrium condition, depletion region, depletion capacitance, IV characteristics, charge storage and transient behaviour, junction breakdown, Heterojunction		
		Bipolar transistor and related devices: The transistor action, static characteristics of bipolar transistor, frequency response and switching of bipolar transistor, the heterojunction bipolar transistor, the thyristor and related power devices		
	Assignment			
	Topics:			
2	In Class	MOSFET and related devices	9	2
		The MOS diode, MOSFET fundamentials, MOSFET scaling, CMOS and BiCMOS, MOSFET on insulator, MOS memory structure, The power MOSFET, Metal-semiconductor contact, MESFET, MODFET.		
	Assignment			
	Topics:	Joines & Communica		

3	In Class	Microwave diodes, quantum effect, and hot-electron devices	10	3
		Basic microwave technology, Tunnel diode, IMPATT diode, transferred electron devices, quantum effect devices, Hot electron devices.		
	Assignment			
	Topics:			
4	In Class	Photonic devices	10	4
		Radiative transitions and optical absorption, light emitting diode, semiconductor laser, photodetector, Solar cell		
	Assignment			
	Topics:			
5	In Class	Flexible electronics	10	5
		Materials for Flexible Electronics, Fabrication Technology for Flexible Electronics, Mechanical Theory of Film on Substrate Foil Structure, Materials and Novel Patterning Methods for Flexible Electronics. Low Temperature Amorphous and Nano-crystalline Silicon Materials, Low-Temperature Dielectrics, Low Temperature Thin Film Transistor Devices, Flexible Transition Metal Oxide Electronics.		
	Assignment			
	Topics:			

Books

- 1. Donald A Neamen, Semiconductor Physics and Devices: Basic Principles, McGraw-Hill (1997) ISBN 0-256-24214-3.
- 2. Yuan Taur & Tak H Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 1998.
- 3. Robert F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley (1995), ISBN 020154393-1.
- 4. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, John Wiley, 1982.
- 5. K. K. Ng, Complete Guide to Semiconductor Devices, McGraw Hill, 1995.
- 6. Flexible Electronics Fabrication and Ubiquitous Integration, Ramses V. Martinez, Mdpi AG

VT307A3

Credit: 4 (L-3, T-1, P-0)

Linear and Digital Control Systems

Questions to be set: 05 (All Compulsory)

Course objectives

1. To give a vision and introduction to how the input affects the output (or, vice-versa, what inputs should be given to generate a desired output).

2. To provide the knowledge of the response of control systems to various standard test inputs.

3. To highlight the basic architecture of analog controllers under various control actions.

4. To understand the utility of frequency domain and time domain analysis for stability.

5. To understand the design of control systems using compensation circuits.

6. To analyze the use of digital control systems using state space technique.

Prerequisite

ment of Election

Knowledge of Engineering mathematics and basic electronics

Course outcomes

On completion of the course the student should be able to:

- 1. Describe the mathematical model of electrical and mechanical systems
- 2. Explain the stability in the time domain and the calculation of steady-state error.
- 3. Illustrate the stability in frequency domain
- 4. Explain Digital Control Systems using state space representation.
- 5. Summarize the various type of controller operation.

Module	Topics to be	Topics	Hrs	CO
	covered			
Module 1:	In class	Classification, comparison of open-loop and	9	1
Introduction	Topics	closed-loop systems, Representation of control systems by block diagrams. Mathematical models of electrical mechanical and		
to Control		electromechanical systems. Block diagram reduction, signal flow		
systems and		graphs, Masons gain formula, limitations of mathematical models		
system				
modeling				
Module 2:	In class	Step response of first - and second - order	9	2
	Topics	systems, under damped system response, over damped, critically damped system – time domain specifications, Concept of order of		
s& Communi	IN MANIPAL IN	system, type of systems. Steady state errors, Error ratio, Static error		
SMIT SMIT		Page 104 of 175		

Time-		Constants, Generalized error series. dynamic error coefficients, steady		
domain		state errors due to Impulse, step and ramp inputs.		
analysis				
Module 3:	In class	The concept of stability – Routh's stability	10	3
Stability	Topics	criterion – qualitative stability and conditional stability – limitations of Routh's stability. Root locus technique – properties and rules for		
analysis		construction, numerical examples. Nyquist stability criterion, construction of Nyquist-plot, stability assessment from the plot.		
		Bodeplot—Gain Margin and Phase margin calculations and corresponding stability assessment		
Module 4:	In class	Concepts of state, state variables and state	10	4
State space	Topics	model, derivation of state models from block		
analysis		invariant state Equations, State Transition Matrix and it's Properties – Concepts of		
		Controllability and Observability.		
Module 5:	In class	Proportional control, proportional-plus integral control, proportional-	10	5
Analog	Topics	plus-derivative control. Proportional-plus-integral-plus derivative control, their realization. Tuning the controllers - ziegler and Nicholas		
controller		methods		

Test books

- ii) Automatic Control System By S. Hasan Saeed
- iii) Linear Control Systems By B. S. Manke

Reference books

- i) Control System Engineering By Norman S. Nise
- ii) Modern Control Engineering By Katsuhiko Ogata

VT308A3

Information Theory and Coding

Questions to be set: 05 (All Compulsory)

Course Objectives: The course is intended to give students a basic idea of information theory and coding. The course offers different types of source and channel coding technique, channel capacity and bounds, probability of error calculation for different channels.

Pre-requisites: Random variable and Process and, Probability, Linear Algebra

Course Outcomes (CO): Students should be able to

- 1. Calculate information, entropy and kraft's inequality.
- 2. Identify the concept of Shannon's theorem.
- 3. Analyze the concept of mutual information and channel capacity.
- 4. Inspect error detection and correction in linear block codes.
- 5. Construct convolutional codes and turbo codes.

Module	Topics to be	Topics	Hrs	CO
	covered			
Module 1:	In class	Definition of Information, Properties of Information, Entropy,	10	1
INFORMATION	Topics	Information rate, Zero memory information source, Entropy,		
SOURCES AND		Properties of Entropy, Markov information source, Adjoint		
PROPERTIES		Source, Extensions of a Markov source. source coding: Uniquely		
OF A CODES:		decodable codes, Instantaneous cods, Construction of		
		Instantaneous cods, Kraft's Inequality, McMillan's Inequality		
	Assignment	Tutorial problems on entropy, classification of codes based on		1
	Topics	kraft's Inequality		
Module 2:	In class	The average length of a code, Encoding for the special sources,	8	2

Module 2:	In class	The average length of a code, Encoding for the special sources,	8
INFORMATION	Topics	Shannon's First Theorems, Shannon Fano algorithm, Huffman's	
CODES		Codes, r-array compact cods, code efficiency and redundancy.	
		Shannon- Hartley law, Trade-off between bandwidth and SNR.	

Assignment Tutorial problems on source coding 2 **Topics** Module 3: In class Information Channels, probability relation in a channel, apriori 12 3 **Topics CHANNEL AND** and posteriori entropies, A generalization of Shannon's first MUTUAL theorem, Mutual information, properties of mutual information, **INFORMATION** noiseless and deterministic channels, cascaded channels, channel capacity, conditional mutual information. Assignment Tutorial problems on mutual information and channel capacity 3 **Topics** Module 4: In class Error probability and decision rules, The Fano bound, Reliable 10 Δ **Topics RELIABLE** messages and unreliable channels, An example of coding to correct errors, Hamming distance, Shannon's Second theorem for MESSAGES **THROUGH** binary symmetric channel (BSC)-The First step, Random coding-NON-Second Step. **RELIABLE** Linear Coding linear block codes for error detection and **CHANNELS** correction. codes) Linear block codes and their properties, syndromes, weight **USING ERROR** CORRECTING distribution. CODES BCH Codes: Binary and Nonbinary BCH codes (Reed Solomon) BCH codes for Channel performance improvement against burst errors. Assignment Tutorial problems on linear block codes 4 **Topics** Module 5: In class Convolutional codes: Convolutional encoders and decoding 8 5 **Topics CONVOLUTION** convolution codes for performance analysis & cyclic codes for **CODES, LDPC** error detection and correction. trellis diagrams, Viterbi algorithm. **CODES AND** Turbo codes: Turbo encoders and Iterative turbo decoding **TURBO** LDPC Codes: Encoding and decoding CODING Assignment Tutorial problems on Convolutional codes codes 5

Topics

Page 107 of 175
Text Books:

- 1. N. Abrahamson, Information Theory, and coding. 2e, McGraw Hill, 1963
- 2. Thomos M.Cover et.al, Elements of Information Theory. 2e, Wiley Series in Telecommunication, 2004.
- 3. Sarah J Johnson, Iterative error correction. Cambridge University Press, 2010.

Reference Books:

- 1. R.G. Gallager, "Information Theory and reliable communication", Wiley Newyork, 1e, 1968
- Richard E. Blahut, "Principles and practices of information Theory" –, Addison Wesley,1e 1987.
- David Slapian, "Key papers in the development of information theory", IEEE press, 1e, 1973.
- 4. Shu Lin et.al, Error Control coding. 2e, Pearson, 2011.

VT309A3

MEMS & NEMS

Questions to be set: 05 (All Compulsory)

Course Objectives: The main aim of the course is to teach basic knowledge in MEMS & NEMS and apply them to design different real-time products and to impart a solid understanding of the role of micro and Nano-systems and their design and development. **Pre-requisites**: Basic knowledge in Analog & digital electronics, VLSI design, and fabrication technique.

Course Outcomes (CO): Students can be able to

- 1. explain the basics of the Micro Electronic Mechanical System.
- 2. design different MEMS devices.
- 3. manufacture different MEMS devices.
- 4. design different MEMS devices used in medical Science.
- 5. design different NEMS devices.

Module	Topics to be	Topics	Hrs	CO
	covered			
Module 1:	In class	Overview of microelectronics manufacture and Microsystems	7	1
Introduction Topics		technology. Definition - MEMS materials. Laws of scaling. The		
to micro-		multidisciplinary nature of MEMS. Materials for MEMS		
systems		manufacturing, Applications of MEMS in various industries.		
	Assignment	Recent trends in MEMS		1
	Topics			
Module 2: MEMS	In class Topics	Working principle of Microsystems, micro-actuation techniques, micro sensors, Definition, Constructional description,	12	2
Devices		Classification, Working principle, and applications of		
		MEMS Accelerometers and MEMS gyroscopes, RF MEMS, Optical MEMS		
	Assignment	Industrial Details of MEMS device design company and its scope.		2
	Topics			
		1176		

Module 3:	In class	Bulk Micro manufacturing, surface micro machining, LIGA,	9	3
MEMS	Topics	SLIGA, High aspect ratio (HAR) silicon micromachining, Micro		
manufacturing		system packaging materials, surface bonding, wire bonding, sealing		
technologies	Assignment	Industrial Details of MEMS fabrication company and its scope.		3
	Topics			
Module 4:	In class	MEMS Pressure Sensors, MEMS Hearing-Aid Transducer, Micro	9	4
MEMS devices	Topics	fluidics for diagnostics, Micro fluidics for drug delivery, Micro		
for biomedical		machined needles, Microsurgical tools. Modern trends in MEMS		
applications	Assignment	Current trends in MEMS based bio medical instruments.		4
	Topics			
Module 5:	In class	Overview of microelectronics manufacture and Nano-systems	11	5
Nano-	Topics	technology. SOI MOSFET, multi-gate transistors - single gate -		
systems Design		double gate – triple gate, Carbon nanotube, Carbon nanotube FETs		
		- Carbon nanotube MOSFETs, General model for ballistic nano		
		transistors – MOSFETs with 0D, 1D, and 2D channels – Molecular		
		transistors – Single electron charging – Single electron transistor		
	Assignment	Recent trends in MEMS		5
	Topics			

Text Books:

- Tai-Ran Hsu, MEMS and Microsystems Design and Manufacture, Tata McGraw-Hill Publishing Company Ltd, 2012.
- Mark Lundstrom, Jing Guo, "Nanoscale Transistors: Device Physics, Modeling and Simulation", Springer, 2006

Reference Books:

- (i) Francis E.H. Tay and Choong .W.O, Micro fluidics and Bio MEMS application, IEEE Press New York, 1997.
- (ii) M S Lundstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University Press, Cambridge UK, 2000.

Program Elective-5

VT310A3

ADVANCE VLSI AND SOC DESIGN

Questions to be set: 05 (All Compulsory)

Course objectives:

Historical Perspective of VLSI, CMOS VLSI Design for Power and Speed consideration, Logical Efforts: Designing Fast CMOS Circuits; Datapath Design, Interconnect aware design, Hardware Description Languages for VLSI Design, FSM Controller/Datapath and Processor Design, VLSI Design Automation, and VLSI Design Test and Verification.

Prerequisite: Knowledge of basic VLSI circuit and technology.

Course outcomes

On completion of the course, the student will be able to:

- 1. Introduction to different VLSI design and performance parameters.
- 2. Familiarization to data path & Interconnect aware design
- 3. Skill development inHardware Description Languages for VLSIDesign.
- 4. Introduction to processor design.
- 5. Familiar with different Automation and testing tools in VLSI design.

Module Topics to be		Topics		CO
	covered			
1	In Class	CMOS VLSI Designfor Power and Speed consideration	10	1
		Historical Perspective and Future Trends in CMOS VLSI Circuit and System Design- Part-I,Historical Perspective and Future Trends in CMOS VLSI Circuit and System Design - Part II, Logical Effort - A way of Designing Fast CMOS Circuits Logical Effort - A way of Designing Fast CMOS Circuits - Part II, Logical Effort - A way of Designing Fast CMOS Circuits - Part III, Power Estimation and Control in CMOS VLSI circuits Power Estimation and Control in CMOS VLSI circuits - Part II Low Power Design Techniques- Part-I,Low Power DesignTechniques - Part II		
	Assignment			
	Topics:			
2	In Class	Datapath Design & Interconnect aware design:	9	2
		Arithmetic Implementation Strategies for VLSI, Impact of scaling, buffer insertion and Inductive peaking, Low swing and Current mode signalling, Capacitively coupled interconnects.	of 175	

	Assignment			
	Topics:			
3	In Class	Hardware Description Languages for VLSI Design	10	3
		Managing concurrency and time in Hardware Description Languages. Introduction to VHDL. Basic Components in VHDL. Structural Description in VHDL. Behavioral Description in VHDL. Introduction to Verilog.		
	Assignment			
	Topics:			
4	In Class	Controller/Datapath and Processor Design	4	4
		FSM + datapath (GCD example) , Single Cycle MMIPS, Multicycle MMIPS , Multicycle MMIPS – FSM		
	Assignment			
	Topics:			
5	In Class	VLSI Design Automation, Test and Verification	15	5
		Brief Overview of Basic VLSI Design Automation Concepts, Netlist and System Partitioning, Timing Analysis in the context of Physical Design Automation, Placement algorithm, Introduction to VLSI Testing, VLSI Test Basics - I, VLSI Test Basics - II, VLSI Testing:Automatic Test Pattern Generation, VLSI Testing: Design for Test (DFT), VLSI Testing:Built-In SelfTest (BIST), VLSI Design Verification: An Introduction 40. VLSI Design Verification: Equivalence Checking, VLSI Design Verification: Equivalence/Model Checking, VLSI Design Verification: Model Checking		
	Assignment	-		
	Topics:			

Books

- 1. Rao R. Tummala, Fundamentals of Microsystems Packaging, McGraw Hill, NY, 2001.
- 2. William D. Brown, Advanced Electronic Packaging, IEEE Press, 1999.
- 3. Bosshart, Printed Circuit Boards Design and Technology, TataMcGraw Hill, 1988.
- 4. Blackwell (Ed), The electronic packaging handbook, CRC Press, 2000.

VT311A3

SEMICONDUCTOR DEVICE MODELLING

Questions to be set: 05 (All Compulsory)

Course objectives:

This course is a foundation-level course on semiconductor devices. The course consists of three broad topics (1) Semiconductors properties, (2) Devices and (3) governing equations along with their boundary conditions. The course objective is to develop a sound physical and intuitive understanding of semiconductor devices and achieve the ability to make some key decisions while designing application-specific semiconductor devices.

Prerequisite: Basic semiconductor physics and mathematics

Course outcomes

On completion of the course, the student will be able to:

- 1. understand the advanced semiconductor physics.
- 2. familiar with semiclassical transport theory.
- 3. interpret drift-diffusion model.
- 4. realize the hydrodynamic modeling.
- 5. understand the quantum transport model.

Module	Topics to be covered	Topics	Hrs	CO
1	In Class	Introduction to semiconductor physics	10	1
	Assignment	Crystal structure-Unit cell and Miller Indices, Reciprocal Space, Doping, Band Structure, Effective Mass, Density of states, Electron Mobility, Semiconductor Statistics- Fermi-Dirac function and carrier concentration calculation, p-n junction under equilibrium, derivation of I-V relation, Minority carrier diffusion equation, non- idealities in the p-n junction diode (Breakdown and Generation- Recombination currents).		
	Topics:			
2	In Class	Semiclassical Transport Theory	6	2
° Com		Distribution Function, Boltzmann Transport Equation (BTE), Relaxation-Time Approximation (RTA), Scattering and Mobility.		

	Assignment			
	Topics:			
3	In Class	Drift-Diffusion (DD) model	12	3
		Drift-diffusion model Derivation and dielectric relaxation time, Taylor series expansion and Finite Difference method, Normalization, Scaling and Linearization of Poisson's Equation and Scharfetter–Gummel Discretization of the Continuity Equation, Generation and Recombination models, Derivation of SRH model, Boundary conditions, Gummel's Iteration Method and Newton's Method, Drift-Diffusion Application example.		
	Assignment			
	Topics:			
4	In Class	Hydrodynamic Modeling	10	4
		As an extension of the DD model, Carrier Balance, Energy balance, and momentum balance Equations, Direct solution scheme through Monte Carlo simulations.		
	Assignment			
	Topics:			
5	In Class	Quantum Transport models	10	5
		Tunneling, Schrodinger equation and free particle, potential step, potential barrier, Transfer Matrix Approach, Quantum Mechanical corrections to standard approach.		
	Assignment	**		
	Topics:			

Books

- 1. G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.
- 2. S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley&Sons, 2006.
- 3. D Vasileska, SM. Goodnick, G Klimeck, "Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation," CRC Press 2010.
- 4. Selberherr Siegfried, "Analysis and Simulation of Semiconductor Devices", 1984

VT312A3

MACHINE LEARNING

Questions to be set: 05 (All Compulsory)

Course Objectives: The objective of this course is to provide a concise introduction to the fundamental concepts in machine learning and popular machine learning algorithms. The standard and most popular supervised learning algorithms including linear regression, logistic regression, assembling and boosting algorithms and neural networks with an introduction to Artificial Neural Networks.

Pre-requisites: Basics of Probability and Linear Algebra

Course Outcomes (CO): After Successful completion of this course, students should be able to

- CO-1: Apply the knowledge of linear regression and logistic regression for prediction and classification problems.
- CO-2: Use supervised learning algorithms to solve classification problems.
- CO-3: Explain the theoretical framework for analyzing the generalization error of a learning algorithm.
- CO-4: Apply unsupervised learning algorithms for dimensionality reduction and clustering techniques to real world problems.
- CO-5: Explain the basic concept of Artificial Neural Network.

Module

Hrs CO

1

Topics of Learning: Supervised Learning, Module 1: Basic Definition, Types 10 **Basics of ML** Unsupervised Learning, semi-supervised Learning and Learning. Examples Machine and Reinforcement of Learning Regression Applications., hypothesis space and inductive bias, evaluation, crossvalidation. Linear Regression: Linear Regression with Single Variables- Model Representation and Cost Function. Parameter Learning: Gradient Descent, Gradient Descent Intuition, Gradient Descent for Linear Regression, Linear Regression with Multiple Variables Multiple Features, Gradient Descent for Multiple Variables, Gradient Descent in Practice: Feature Scaling and Learning Rate; Features and Polynomial Regression. Logistic Regression: Classification and Representation. Classification, Hypothesis Representation and Decision Boundary, Logistic Regression Model - Cost Function, Simplified Cost Function and Gradient Descent Multiclass Classification-One-vs-all. Regularization: Overfitting problems, Regularized Linear Regression, Regularized Logistic Regression.

Module 2: Nearest neighbor (NN), Linear Discriminant Analysis, Support vector 2 10 machines, Decision Trees, Generative classifiers like naïve Bayes. **Supervised** Learning

PAC learning model, Sample complexity, VC Dimension, 3 Module 3: 10 **Computational** Ensemble learning: Bagging, Boosting, Stacking learning theory

Page 116 of 175

Module 4:	Principle component Analysis, Factor Analysis, Nonnegative matrix	10	4
Unsupervised	factorization, Rate-Distortion Theory, Kmeans, hierarchical		
Learning	clustering, Gaussian mixture model, Expectation-Maximization Algorithm		
Module 5: Neural Networks	Overview of neural networks, perceptron's, Activation functions, Multilayer network, backpropagation Algorithm	8	5

Text Books:

- Ethem Alpaydın, "Introduction to Machine Learning", 2nd Edition, MIT Press, 2010. 2. Tom M. Mitchell, "Machine Learning", McGraw-Hill Science, 1997.
- 2. Trevor Hastie, Robert Tibshirani and Jerome Friedman.. The Elements of Statistical Learning. Second Edition, Springer, 2009

Reference Books:

- 1. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer 2006
- Stephen Marsland, "Machine Learning: An Algorithmic Perspective", 2nd Edition, CRC Press, 2015.
- 3. R. O. Duda, P. E. Hart, and D. G. Stork, "Pattern classification". John Wiley & Sons, 2012.
- 4. Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning.. Cambridge University Press. 2017.
- 5. Tom Mitchell, Machine Learning, McGraw Hill, 1997

Open Elective-1

VT201A2

Introduction to Complex Variables

Questions to be set: 05 (All Compulsory)

Course objectives:

Complex numbers, the topology of the complex plane, the extended complex plane and its representation using the sphere. Complex functions and their mapping properties, their limits, continuity and differentiability, analytic functions, analytic branches of a multiplevalued function. Complex integration, Cauchy's theorems, Cauchy's integral formulae. Power series, Taylor's series, zeroes of analytic functions, Rouche's theorem, open mapping theorem Isolated singularities and their classification, Laurent's series, Cauchy's residue theorem, the argument principle.

Prerequisite:

Single and multi-variable real analysis

Course outcomes

On completion of the course the student should be able to:

1. Understand the concept of the Algebra Geometry and Topology of the Complex Plane

2. Understand the concept of the Complex Functions and associated concept of Limits, Continuity and Differentiation

3. Exploit Complex Integration methods

- 4. Understand the Properties of Analytic Functions
- 5. Understand the concept of Isolated Singularities and Residue Theorem

Module	Topics to be	Topics	Hrs	СО	PO	PSO
	covered					
1:	In Class	Introduction and overview of the course, Complex	8	1	1,2	1
Introduction: The Algebra Geometry and Topology of the Complex Plane		numbers, conjugation, modulus, argument and inequalities, Powers and roots of complex numbers, geometry in the complex plane, the extended complex plane, Topology of the complex plane: Open sets, closed sets, limit points, isolated points, interior points, boundary points, exterior points, compact sets, connected sets, sequences and series of complex numbers and convergence.				
	Assignment	Numerical Problem				
	Topics:					
2:	In Class		10	2	1,2	1
Stics & Communica	JUI MANNA IN	Introduction to complex functions, Limits and continuity, Differentiation and the Cauchy-Riemann				
SMIT SMIT		Pag	e 119 c	of 175		

3. In Class Complex Integration Theory Integration In	3	1,2	1
formula, Cauchy's estimate, Liouville's theorem, the fundamental theorem of algebra, higher derivatives of analytic functions, Morera's theorem			
Assignment Numerical Problem Topics:			
4.In ClassPower series, their analyticity, Taylor's theorem, Zeroes9Properties of Analytic FunctionsPower series, their analyticity, Taylor's theorem, Open mapping theorem, maximum modulus theorem9	4	1,2	1
Assignment Numerical Problem Topics:			
 5. In Class Isolated singularities, removable singularities, Poles, 9 Isolated singularities, Casoratti- Weierstrass theorem, Laurent's theorem, Residue theorem, the argument principle. 	5	1,2	1
Residue TheoremAssignmentNumerical ProblemTopics:			

Test books

1. H. A. Priestley, Introduction to Complex Analysis, 2nd edition (Indian), Oxford, 2006.

2. L. V.Ahlfors, Complex Analysis, 3rd edition, McGraw Hill, 2000.

Reference books

1. J. E. Marsden and M. J. Hoffman, Basic Complex Analysis, 3rd edition, W.H. Freeman, 1999.

2. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th edition, McGraw Hill, 2003

VT202A2

Iledan *

SEMICONDUCTOR PHYSICS

Questions to be set: 05 (All Compulsory)

Course Objectives:

Semiconductor physics. Explain and apply basic concepts of semiconductor physics and semiconductor devices. Describe, explain, and analyze the operation of important semiconductor devices in terms of their physical structure. Physics-based models. Explain, describe, and use physicsbased device and circuit models for semiconductor devices of varying levels of complexity, select models appropriate to a specific need, and apply those models to analyze multi-component circuits.

Pre-requisites: Students should be able to,

CO1: Demonstarte a clear understanding of concepts of semiconductor materials and the physics of the materials and devices.

CO2: Demonstarte an understanding of Quantum Theory of Semiconductors.

CO3: Build a clear knowledge and exhibit the understanding of various carrier statistics in semiconductors.

CO4: Apply various models for the current transport for different conditions in a semiconductor.

CO5: Exhibit a clear understanding of various carrier dymanics and matchmnatical derivations for continuity and concentrations in semiconductors.** not more than 20% of total topics to be allotted for assignment

Module	Topics to be	Topics	Hrs	CO
mouule	covered	Toplos	1115	00
Module 1: QUANTUM THEORY OF SEMICONDUCTORS	in class	Type of solids, Bravais lattices, Lattice with basis, Point defects, Dislocation, Bulk crystal growth, Epitaxy, Energy levels of atoms and molecules, Energy bands of solids, Energy bands in real space, Energy bands in reciprocal lattice, Energy band structures of metal and insulator, Kronig-Penny Model, Definition of semiconductor, Electrons and holes, and Effective mass.	10	1
	**Assignment Topics	Kronig-Penny Model, Definition of semiconductor, Electrons and holes, and Effective mass		1
Module 2: CARRIER STATISTICS	in class	Currents in semiconductors, Density of states, Fermi-Dirac probability function, Equilibrium carrier concentrations, Non-degenerate semiconductors, Intrinsic carrier concentration, Intrinsic Fermi level, Donor and acceptor impurities, Impurity energy levels, Carrier concentration in extrinsic semiconductor, and Fermi level of extrinsic semiconductors, Position of Fermi Energy Level: Mathematical Derivation , Variation of E, with Doping Concentration	10	2
CANIT THE CANIT		and Temperature, Relevance of the Fermi Energy, Statistics of Donors and Acceptors:		

	**Assignment Topics	Probability Function , Complete Ionization and Freeze-Out ,Compensated Semiconductors Position of Fermi Energy Level		2
Module 3: CURRENTS IN SEMICONDUCTOR	in class	Thermal motion of carriers, Carrier motion under electric field, Drift current, Mobility and conductivity, Velocity saturation, Diffusion of carriers, General expression for currents in semiconductor, Carrier concentration and mobility, and the Van der Pauw technique. Graded Impurity Distribution: Induced Electric Field, The Einstein Relation	10	3
	**Assignment Topics	Graded Impurity Distribution: Induced Electric Field, The Einstein Relation		3
Module 4: ELECTRON TRANSPORT	in class	Electronic transitions in semiconductor, Radiative transition, Direct and indirect bandgap semiconductors, Roosbroeck-Shockley relationship, Radiative transition rate at nonequilibrium, Minority carrier lifetime, Localized states, Recombination center and trap.	10	4
	**Assignment Topics	Direct and indirect bandgap semiconductors		4
Module 5: CARRIER DYNAMICS	in class	Shockley-Hall-Reed recombination, Surface recombination, Auger recombination, Derivation of continuity equation, Non-equilibrium carrier concentration, Quasi-Fermi level, Current and quasi-Fermi level, Non-uniform doping, and Non- uniform bandgap.	8	5
	**Assignment Topics	Fermi level, Non-uniform doping, and Non- uniform bandgap.		5

Textbooks:

1. G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.

2. D. Neamen , D. Biswas "Semiconductor Physics and Devices," McGraw-Hill Education.

3. S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley & Sons, 2006. 4. C.T. Sah, "Fundamentals of solid-state electronics," World Scientific Publishing Co. Inc, 1991.

Reference Books:

1. Y. Tsividis and M. Colin, "Operation and Modeling of the MOS Transistor," Oxford Univ.Press, 2011.

VT203A2

PYTHON PROGRAMMING

Questions to be set: 05 (All Compulsory)

Course Objectives: This course covers the fundamentals of Python programming. This course covers everything from the fundamental concepts of Python such as variables, operators, lists, tuples, and objects to topics like files and exception handling. The completion of this course will enable the students to write programs in Python language to solve their problems of interest.

Pre-requisites: Knowledge of basics programming.

Course Outcomes (CO):

After studying this course, students will be able to:

1. Understand the concept of structure, data types and variables using Python Programming Language

2. Apply the concept of list, tuples, functions and dictionaries in Python Programs

3. Understand and use classes and objects in Python.

4. Read and write files in Python.

5. Use exception handling in Python applications for error handling.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
1.	In class	Introduction, Features, Lexical Structure, Data	10	1
Overview &		Type, Variables, Numbers, Strings, Expression		
Introduction		and Operators, Numeric Operations, Conditional		
		Statements, Looping, Control flow Statements.		
2.	In Class	Introduction to List and Tuple, Accessing List	10	2
List, Tuples,		and Tuple, Operations, working with List and		
Functions &		Tuple Build-in Function and Methods, optional		
Dictionaries		arguments, default values, Passing functions as		
		arguments, Working with dictionaries, properties		
		and Methods.		
3.	In Class	Defining Class, Creating Object, Built-in class	8	3
Classes and		Attributes, Inheritance, Overloading and		
Objects in		Overriding, Data Hiding		
Python				
4.	In Class	File Objects, File Built-in Function, File Built-in	10	4
Read and		Methods, File Built-in Attributes, Standard Files,		
Write Files		Command-line Arguments, File System, File		
		Execution, Persistent Storage Modules.		
5.	In Class	Exceptions in Python, Detecting and Handling	10	5
Error and		Exceptions, Exceptions as Strings, Raising		
Exception		Exceptions, Assertions, Standard Exceptions		
Handling				

Text Book

- 1. Lutz, Mark, Learning Python, O Rielly.
- 2. Chun, J Welsey, Core Python Programming, Pearson.

Reference Books:

- 1. Ljubomir Perkovic, Introduction to Computing Using Python: An Application Development Focus, John Wiley & Sons.
- 2. Barry, Paul, Head First Python, O Rielly.
- 3. Guttag John V, Introduction to Computation and Programming Using Python with Application to Understand Data, PHI.
- 4. Taneja Sheetal, Python Programming : A modular approach, Pearson.

VT204A2

nt of Elect

SMIT

MATHEMATICS FOR COMMUNICATION ENGINEERING

Questions to be set: 05 (All Compulsory)

Course Objectives:

- **iv.** To build the strong foundation in Mathematics in students needed for the field of Communication Engineering.
- **v.** To provide the mathematics fundamentals necessary to formulate, solve and analyse complex engineering problems.
- vi. To apply reasoning by the contextual knowledge to engineering practice.

vii. To work as teams on multi-disciplinary projects.

Pre-requisites: Linear algebra

Course Outcomes (CO): Students should be able to

- 1. Apply matrix theory in Communication Engineering problems.
- 2. Calculate gradients, derivatives and its applications
- 3. Apply the constrained optimization for approximate solutions.
- 4. Do statistical modelling and analysis of Communication Systems
- 5. Apply Markovian process and distinguish the utility of queuing models.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Basic Matrix Concepts	in class	Linear equations and matrix representations, Determinants. Vector spaces- Basis and dimension, Norms and inner-products, The Cauchy- Schwarz inequality, Direction of vectors, weighted inner products, Expectation as an inner product, Hilbert and Banach spaces, orthogonal subspaces, null space, column space, row space. Projection matrices	9	1
	**Assignment Topics	Numerical Problems		1
Module 2: Matrix Factorizations and applications	in class	The LU factorization-Methods of Crout and Cholesky factorization, unitary matrices and the QR factorization, Eigen values, Eigen vectors, EVD, whitening, Pseudo inverses and the SVD, numerically sensitive problems, Rank-reducing approximations.	9	2
	**Assignment Topics	Numerical Problems		2
Module 3: Theory of	in class	Basic definitions, definitions of constrained optimization, equality constraints: Lagrange multipliers.	8	3
Constrained optimization	**Assignment Topics	Numerical Problems		3
Module 4: Probability and random processes	in class	Random vectors, transformations,jointmoments,jointcharacteristicfunction,correlation, covariance matrices - properties.VectorGaussian,Q-function, CircularcomplexGaussian,	10	4
s & Comm	A MANINA	Page 125	of 175	

		various transformations, Gaussian random vectors, Rayleigh, Rician, Nagakami distributions, probability of error upper bounds for M- ary modulations	
	**Assignment Topics	Numerical Problems	4
Module 5: Markov Chains Queuing theory	in class	 Markov Process, Markov chains, Birth Death process- Characteristics of queuing models –Kendall's otation Transient and Steady States and Difference equations related to Poisson Queue systems Single server and Multiple Server Poisson queue Models with Finite and Infinite capacity. 	5
	**Assignment Topics	Numerical Problems	5

Text-Books:

- 1. Todd.K. Moon and Wynne Stirling, Mathematical methods and algorithms for signal processing, 2000, Prentice Hall, 2000. New York.
- 2. John G. Proakis, Masoud Salehi, Digital Communications, 2008, 5thedition, McGrawHill.
- 3. T.Veerarajan, Probability, Statistics and Random Processes, 2009, 3rd edition, McGrawHill.

Reference Books:

- 4. Gilbert Strang, Introduction to Linear Algebra, 2009, 4th edition, Wellesley-Cambridge press.
- **5.** E. Larsson, P. Stoica, Space time block coding for wireless communications, 2003, Cambridge University press.
- **6.** P.P. Vaidyanadhan, Multirate systems and filter banks, 1993, Pearson India. Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, Statistical and adaptive signal processing: Spectral estimation, signal modelling, adaptive filtering and array processing, 2005, Artech House.
- 7. Athanasios Papoulis, S Pillai, Probability, Random Variables and Stochastic Processes, 2014 (reprint), 4th Edition, McGraw-Hill.
- **8.** Kishor S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2016, 2nd Edition, John-Wiley & Sons.

Open Elective-2

VT205A2

Signal Processing for Communication

Questions to be set: 05 (All Compulsory)

Course Objective : The student should be able to understand different Signal processing techniques used in Analog, Digital and Wireless Communication.

Pre-requisites: Thorough knowledge of Differential and Integral Calculus, Probability and Linear Algebra are expected

Course Outcomes(CO):

COs At the end of the course, the students should be able to

- CO1 gain insight of Signals and its different forms.
- CO2 gain idea about signal processing
- CO3 gain insight of Communication systems and channels

also learn about different type of signal processing techniques required in wireless CO4 communication system.

- con communication system.
- CO5 Design a basic communication system.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to Signals and Hilbert Space	in class **Assignment	Basic Signals: Type of basic signals , Energy, Power, digital frequency,FiniteLengthand Infinite Length Signals, Elementary Operations: Shifting,ScalingandFolding,Basic communication System Model, Review of Euclidean Geometry,VectorSpace,Hilbert Space, Example of Hilbert Space, Inner Product and Distances,Subspace,Basesand Projections, Signal Space, Gram-Schmidt Process. Numericals on Signal operations and gram-Schmidt	10	1
	Topics	Process.		
Module 2: Stochastic Signal Processing	in class ** A ssignment	Random Variables, Random Vectors, Random Processes, Power Spectral Density (PSD), PSD of stationary Process, White Noise, Stochastic Signal Processing. Sampling Theorem, Aliasing: Non bandlimited signals, Discrete time processing of analog signals, proof and example, Interpolation: Local, Polynomial and Sinc. Guassian Distribution. Anti-aliasing Filter	10	2
	Topics	SMIT SMIT Pag	je 128 d	of 175

Module 3: A/D and D/A conversion	in class **Assignment Topics	Quantization: Uniform and Non-uniform, Advanced Quantizer, Quantization Error, A/D conversion, D/A conversion. Quantizing for aperiodic signals.	10	3
Module 4: Multirate Signal Processing	in class **Assignment Topics	Downsampling: Properties of Downsampling operator, Frequency Domain representation, Downsampling and Filtering, Upsampling and Interpolation, Rational Sampling Rate Change, Oversampling: Oversampled A/D conversion, Oversampled D/A Conversion. Make a chart of five recent DSP processor and compare them based on their performance, efficiency,power consumption	10	4
Module 5: Design of Digital Communication System	in class **Assignment Topics	Communication Channel: AM radio channel and Telephone channel, Transmitter Design: Digital Modulation, Bandwidth and Power Constraint, Receiver Design: Hilbert Demodulation and Channel Effect, Signaling alphabets and power constraints, Adaptive Synchronization: Timing Recovery and Carrier Recovery Design a digital communication system using Matlab.	8	5

Text Book

1. Paolo Prandoni and Martin Vitterli, "Signal Processing for Communications", EPFL Press, 2008, 1st ed.

Reference Books:

2. Marvin E. Frerking "Digital Signal Processing in Communication Systems", Springer, 1994.

Semiconductor Devices and Circuits

Questions to be set: 05 (All Compulsory)

Course objectives:

This course is intended to equip any students interested in electronic materials and devices with the fundamentals of semiconductor devices. The materials covered in the course begin with fundamentals and accelerate to advanced topics in semiconductor physics. The course connects circuit performance to material and device behavior.

Prerequisite:

ent of Electron

A background in electrical engineering helps to some extent, but this is not required.

Course outcomes

On completion of the course the student should be able to:

- 1. learn the important concepts related to semiconductor technology.
- 2. understand the basic concepts of carrier transport.
- 3. know the basic characteristics of MS contact, PN junctions, BJT.
- 4. explore all concepts related to MOSFET.
- 5. design an optimized CMOS inverter.

Module	Topics to be	Topics	Hrs	CO
	covered			
1	In Class	Concept of wave-particle duality, schrodinger equations,	10	1
Introduction		particle in a box, particle in a periodic potential, harmonic oscillator, formation of bands, Kronig-Penny Model.		
to quantum		electrons and holes, crystals.		
mechanics	Assignment			
and solid-state	Topics:			
physics				
2	In Class	Density of states, Fermi function, carrier concentration,	10	2
Carrier		doping, recombination, generation, charge transport, continuity equation.		
statistics and	Assignment			
carrier	Topics:			
transport				
3	In Class	Junctions, Metal semiconductor junctions, Schottky	10	3
& Commun	IN MUNICAL	contact: electrostatics and current-voltage characteristics, PN junctions: electrostatics and current-voltage		
SMIT SMIT		Page	2 130 of	f 175

Metal-	Assignment	characteristics, BJT: current-voltage characteristics, non-		
semiconductor		idealities and equivalent circuit modeling.		
junction, P-N	Topics:			
junction, and	101100			
Bipolar				
junction				
transistor				
4	In Class	Metal Oxide Semiconductor Capacitor: CV	10	4
MOSCAP,		characteristics, MOSFET: Introduction, I-V characteristics Subthreshold Swing additional concepts		
and MOSFET		trapped charge, Body-bias, scaling of MOSFET, leakage current in MOSFET, MOSFET characterization: parameter extraction trapped charges contact resistance.	ge n:	
	Assignment			
	Topics:			
5	In Class	Static CMOS Inverter, Switching Threshold, Noise	8	5
CMOS circuit		Margins, Computing the Capacitances of CMOS inverter, Propagation Delay: First-Order Analysis, Propagation		
design		Delay from a Design Perspective, Dynamic Power Consumption, Static Consumption, Technology Scaling and its Impact on the Inverter Metrics		
	Assignment	and its impact on the inverter metrics		
	Topics:			

Books

Test books

 B. G. Streetman, Solid State Electronic Devices: Global Edition. 2015. Available: https://www.amazon.com/Solid-State-Electronic-Devices-Global/dp/1292060557
 Donald A Neaman, Semiconductor Physics and Devices, 4th ed, ISBN 978-0-07-352958-5, 2011

3. Digital Integrated Circuits: A Design Perspective, Anantha P. Chandrakasan, Borivoje

Nikolic, and Jan M. Rabaey, 2002

VT207A2

SENSORS AND ACTUATORS FOR IoT

Questions to be set: 05 (All Compulsory)

Course Objectives: To make students familiar with the constructions and working principle of different types of sensors and transducers. To make students aware about the measuring instruments and the methods of measurement and the use of different transducers.

Pre-requisites: Basic Electronics.

* Depa

Course Outcomes (CO):

CO1: The students should be able to identify the components required for IoT system.

CO2: The students should be able to solve problems of amplifiers and converters.

CO3: The students should be able to explain the working of different sensors used in IoT.

CO4: The students should be able to explain the working of different actuators used in IoT.

CO5: The students should be able to integrate sensors and actuators in a single system.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to Hardware used for IoT	in class	Introduction to IOT, Microcontrollers, Microprocessors, SoC. Applications of IOT, Reference Architecture of IOT, IOT Functional Blocks, Need of Sensors in IOT, Selection Parameters of Sensors and Actuator for IOT, Introduction to Arduino, Pi, Spark, Intel Galileo.	10	1
	**Assignment Topics			1
Module 2: Sensor Signal	in class	Amplifier, Driver Circuit, V-I converter, R-V converter, etc.	10	2
Conditioning And Interfacing	**Assignment Topics	Numerical problems.		2
Module 3: Sensor for IoT	in class	Different type of Sensors used in IOT- PIR Motion Sensor, Rain Drop Sensor, Moisture Sensor, Temperature Sensor, Touch Sensor, Infrared Sensor, Camera Sensor, RFID System, Bluetooth Module and Wi-Fi Module	10	3
	**Assignment	Use cases		3
Module 4: Actuators for IoT	in class	Introduction, Actuator Definition, Classification of Actuators, Need for Actuators in IOT enabled system;	10	4
000000000000000000000000000000000000000	Communication	A A A A A A A A A A A A A A A A A A A	Page 13 2	2 of 175

		Working Principle and Applications in IOT – Pneumatic actuators, Hydraulic actuators, Electric actuators, Thermal actuators and Mechanical actuators	
Module 5:	**Assignment Topics	Use cases	4
Interfacing of sensors and actuators	in class	Introduction to interfacing real-world 8 sensors and actuators to embedded computing systems, real-time operation and user interaction, such as digital input/outputs, interrupt service routines and serial communications.	5
	**Assignment Topics	Examples of integrated systems of sensors and actuators.	5

Text Books:

1. Kamal Kishore Jha "Getting Started with IoT: A Hands-on Approach ", Evincepub Publishing, 1/e, 2019

2. Al-Turjman Fadi, "Multimedia-enabled Sensors in IoT: Data Delivery and Traffic Modelling", CRC Press Inc., 1/e, 2018

VT208A2

Credit: 4 (L-3, T-1, P-0)

ADVANCED ANTENNA DESIGN

Questions to be set: 05 (All Compulsory)

Course Objectives:

- i. To provide the essential knowledge of the antenna parameters and measurements.
- ii. To design antenna array using synthesize techniques.
- iii. To design the single element microstrip antenna and array with feeder network
- iv. To introduce the types of high impedance surface antennas for various applications.

Pre-requisites: Linear algebra

Course Outcomes (CO): Students should be able to

- **1.** Understand the radiation mechanism of antenna and to solve the numerical problems related to antenna parameters.
- **2.** Design and interpret non uniform excitation coefficients using array synthesis techniques for minimum side lobe level.
- 3. Design and analyze rectangular and circular microstrip antenna with power divider network.
- **4.** Understand the importance of defected ground structures and metamaterial surfaces and design high impedance surfaces.
- **5.** Exploit the antennas for wireless communication, radar applications, Software defined and cognitive radio.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Antenna Fundamentals	in class	Radiation Mechanism, antennas used in various applications and selection criteria, Antenna measurements using anechoic chamber - Radiation pattern, Radiation Intensity, Power gain, Directivity, impedance, Radiation efficiency, Polarization	10	1
	**Assignment Topics	Numerical Problems		1
Module 2: Antenna Array Synthesis	in class	Fourier Transform - Woodward-Lawson Sampling Schelkunoff Method- Dolph-Tchebyscheff - Taylor Line Source Method	8	2
	**Assignment Topics	Numerical Problems		2
Module 3: Microstrip Antennas	in class	Basic characteristics, feeding methods, Methods of analysis – Transmission line model and cavity model - Design of Rectangular patch, Circular patch – Microstrip antenna array and feed network.	10	3
	**Assignment Topics	Numerical Problems		3
Module 4: Antenna Design Techniques	in class	Antenna Design using Artificial Impedance Surface Metamaterial- Electromagnetic Band Gap- Defective Ground Structure - High Impedance Surface	10	4
Nonics & C	ommunica Juli	Page 134	of 175	

	**Assignment Topics	Numerical Problems	4
Module 5: Antenna Applications	in class	Integrated Antenna for wireless personal 10 communication, mobile communication- Antenna design consideration for MIMO diversity systems - medical therapy, Antenna for Software Defined Radio – Cognitive Radio- Electronic Warfare- Ground penetrating Radar	5
	**Assignment Topics	Numerical Problems	5

Text-Books:

- 1. C.A. Balanis, Antenna Theory: Analysis and Design, 2016, 4th edition, Wiley, India
- 2. C.A. Balanis, Modern Antenna Handbook, 2012, 1st Edition, Wiley, India

Reference Books:

- 1. W.L. Stutzman and G.A. Thiele, Antenna Theory and design, 2012, 3rd Edition, Wiley, India
- 2. J. D. Kraus, Antennas and Wave propagation, 2012, 4th Edition, McGraw Hill, India.
- **3.** Sanjay Kumar, Saurabh Shukla, Wave Propagation and Antenna Engineering, 2016, 1st Edition PHI, India

Open Elective-3

Page 136 of 175

VT301A2

Optimization Techniques

Questions to be set: 05 (All Compulsory)

Course Objectives: The student should be able to understand different Linear and Non-Linear Optimization techniques.

Pre-requisites: Thorough knowledge of Differential Calculus, Probability, Linear Algebra and Matrix Theory are expected.

Course Outcomes (CO): After successful completion of this course, students will be able to:

CO	STATEMENT
CO1	Apply linear algebra, vector space and probability theories for solving practical problems.
CO2	Analyze the optimization problem and function.
CO3	Analyze the linear/ non-linear programming model.
CO4	Evaluate the Unconstrained optimization techniques
CO5	Evaluate the constrained optimization techniques

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Mathematical	in class	Linear algebra and matrices, Vector space, eigen analysis, Elements of probability theory, Elementary multivariable calculus.	8	1
preliminaries	**Assignment Topics	Practice Problems		1
Module 2: Introduction and Optimization using Calculus	in class	Objective function; Constraints and Constraint surface; Formulation of design problems as mathematical programming problems; Classification of optimization problems; Stationary points; Functions of single and two variables; Global Optimum Convexity and concavity of functions of one and two variables; Optimization of function of one variable and multiple variables; Gradient vectors; Optimization of function of multiple variables subject to equality constraints; Lagrangian function Hessian matrix formulation; Eigen values.	10	2
	**Assignment Topics	Practice Problems		2
Module 3: Linear/Non- Linear Programming	in class	Introduction to linear programming model, Standard form of linear programming (LP) problem; Canonical form of LP problem; Assumptions in LP Models; Elementary operations; Graphical method for two variable optimization problem; Simplex method, Duality, Karmarkar's method.	10	3
	& Comm	A TANIMAT A		

	**Assignment Topics	Practice Problems		3
Module 4: Unconstrained optimization	in class	General properties of minimization algorithms, One- dimensional search methods, Gradient-based methods, Newton's method, Conjugate direction and quasi-Newton methods.	10	4
	**Assignment Topics	Practice Problems		4
Module 5: Constrained Optimization	in class	Lagrange theorem, Method of Lagrange multipliers, FONC (First Order Necessary Conditions), SONC (Second Order Necessary Conditions), and SOSC (Second Order Sufficient Conditions).	10	5
	**Assignment Topics	Practice Problems		5

Text Books: Edwin P K Chong, Stainslaw Zak, "An introduction to Optimization", Wiley India, 2017, 4th ed

Reference Books: Stephen Boyd, Lieven Vandenberghe "Convex Optimization", Cambridge University Press, 2004.

VT302A2

Solid State Devices

Questions to be set: 05 (All Compulsory)

Course Objectives:

- i. To provide an insight into the basic semiconductor concepts
- **ii.** To provide a sound understanding of current semiconductor devices and technology to appreciate its applications to electronics circuits and systems

Pre-requisites: Basic Electronics, Electronic Devices & Components

Course Outcomes (CO): Students should be able to

- 1. Learn the basic and fundamental concepts of Semiconductor Physics.
- 2. Gain the knowledge and idea behind the concept of PN Junction and its related topics.
- 3. Analyze the relevant concepts of MOSFET and its different types.
- 4. Understand the concept behind the operating principle of various Opto-electronic devices.
- 5. Recognize the importance of IC Fabrication for industrial applications.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Basic Semiconductor Physics	in class	Elemental and compound semiconductors, Fermi-Dirac distribution, Equilibrium and steady state conditions, Equilibrium concentration of electrons and holes, Temperature dependence of carrier concentration	8	1
	**Assignment Topics	Numericals on Mass-Action Law, Work-function Equilibrium.		1
Module 2: PN Junctions & Semiconductor Contacts	in class	Contact potential, Electrical Field, Potential and Charge density at the junction, Energy band diagram, Minority carrier distribution, Ideal diode equation, Electron and hole component of current in forward biased p-n junction, piecewise linear model of a diode effect of temperature on V-I characteristics. Diode capacitances, switching transients, Electrical Breakdown in PN junctions, Zener and avalanche break down (abrupt PN junctions only), Tunnel Diode basics only. Ohmic and Rectifying Contacts.	12	2
	**Assignment Topics	Numericals on Diode Equation, Zener Diode Voltage Regulation.		2
Module 3: Metal Oxide Semiconductor Devices	in class	The ideal MOS capacitor, band diagrams at equilibrium, accumulation, depletion and inversion, surface potential, CV characteristics, effects of real surfaces, work function difference, interface charge, threshold voltage MOSFET: Output characteristics, transfer characteristics, sub	10	3
SMIT		Page 139	of 175	

	**Assignment Topics	threshold characteristics, MOSFET scaling. Fin FET structure and operation Numericals on Work-function Equilibrium, Transconductance Expression.	3
Module 4: Opto- Electronics & Its Devices	in class	Optical absorption in semiconductors, Photovoltaic 10 Effects, Solar Cells (PN Junction), Photoconductors, Photodiode, PIN photodiode, Avalanche Photodiode, Phototransistor, LED, Semiconductor Laser (PN Junction)	4
	**Assignment Topics	Experimental Observation of LED, Solar Cell Efficiency Measurement, Laser Operation, Photodiode	4
Module 5: Integrated Circuit Technology	in class	Fabrication Process: Oxidation, Diffusion, Ion 8 Implantation, Photolithography, Etching, Chemical Vapor Deposition, Sputtering, Twin-Tub CMOS Process.	5
	**Assignment Topics	Observation of PCB Designing Techniques.	5

Text-Books:

- **4.** Ben Streetman and Sanjay Banerjee, Solid State Electronic Devices, 7e, Prentice-Hall, 2015.
- **5.** Donald A. Neamen, Semiconductor Physics And Devices: Basic Principles, 4e, Tata McGraw-Hill Pvt. Ltd., 2012.
- 6. Millman J and Halkias, Integrated Electronics, 2e, McGraw Hill Education (India) Pvt.Ltd, 2009.

Reference Books:

- **9.** D Chattopadhyay and P.C. Rakshit, Electronics Fundamentals and Applications, 1e, New Age International Publications, 2008.
- **10.** Boylestead and Nashelsky, Electronic Devices and Circuits Theory: 11e, Prentice-Hall, India, 2012.
- **11.** J. Milman and A. Grabel, Microelectronics, 1e, Tata McGraw-Hill Education, 2001.
- 12. S. M. Sze and K. N. Kwok, "Physics of Semiconductor Devices," 3rd edition, John Wiley & Sons, 2006.4. C.T. Sah, "Fundamentals of solid-state electronics," World Scientific Publishing

Co. Inc, 1991.

13. Y. Tsividis and M. Colin, "Operation and Modeling of the MOS Transistor," Oxford Univ.Press, 2011.

VT303A2

Credit: 4 (L-3, T-1, P-0)

IoT Gateways and Edge Computing

Questions to be set: 05 (All Compulsory)

Course Objectives: Integrated Smart Gateways with Edge computing are becoming essential ingredients for the smart proliferation of IoT services. Students will be able to design such Smart Gateway system with the completion of this course.

Pre-requisites: Knowledge of Sensors, actuators and IoT physical layer.

Course Outcomes(CO):

CO1: The students should be able to explain different IoT networking protocols.

CO2: The students should be able to explain Gateways for IoT networking.

CO3: The students should be able to explain different IoT short and long range communication protocols.

CO4: The students should be able to explain the edge and fog computing paradigms.

CO5: The students should be able to explain how the concept of edge and fog computing is applied in different IoT applications.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Overview of Computer	in class	TCP/IP protocol, CoAP, XMPP, Web Socket, AMQP, MQTT, WebRTC, PuSH. in IoT networking, Routers, Switches and Hubs in IoT networking	8	1
Networking	**Assignment Topics	Architectural Considerations in Smart Object Networking.		1
Module 2: Introduction to Gateways	in class	Home Media Gateway and Companion Devices, Architecture of 4K TV Hybrid Set Top Box with case study of Airtel 4K TV STB. Light Gateway and HUB with case study of Philips Hue smart lighting system. Smart IoT Gateways: Processor, Operating System, Memory, Hard Drive, Antennas, Power supply, Wireless LAN Card LTE/5G Mobile broadband Card	10	2
Module 3: Short Range and Long Range Wireless Communication	in class	Bluetooth, 802.15.4, ZigBee, Wireless Hart, Thread, Z- Wave Unlicensed spectrum offerings: LoRa, SigFox; Licensed spectrum specialties: NB-IoT, CAT-M1, Hybrid networks.	10	3
Module 4:	in class	Addressing the Challenges in Federating Edge Resources Integrating IoT-Fog-Cloud Infrastructures	10	4

Page 141 of 175

New	**Assignment	System Management and Orchestration of Network	4
Computing	Topics	Slices in 5G, Fog, Edge, and Clouds.	
Paradigms			
Module 5:	in class	Exploiting Fog Computing in Health Monitoring, 10	5
Applications		Smart Surveillance Video Stream Processing at the	
		Edge for Real-Time Human Objects Tracking,	
	**Assignment	Fog Computing Model for Evolving Smart	5
	Topics	Transportation Applications.	

Text Books:

1. Gerardus Blokdyk, "IoT Gateways The Ultimate Step-By-Step Guide", 5STARCooks , 2018.

Reference Books:

1. James F. Kurose, Keith W. Ross, "Computer Networking", Pearson, Seventh Edition, 2017.

2.https://www.dell.com/en-us/work/shop/gateways-embedded-computing/dell-edge-gateway-

5100/spd/dell-edge-gateway-5100/xctoi5100us

3. Keysight TechnologiesThe Menu at the IoT Café: A Guide to IoT Wireless Technologies. http://literature.cdn.keysight.com/litweb/pdf/5992-2412EN.pdf

4. Rajkumar Buyya and Satish Narayana Srirama, "Fog and Edge Computing Principles and

Paradigms", Wiley Series On Parallel and Distributed Computing, John Wiley & Sons, Inc, 2019.

VT304A2

ADVANCED DIGITAL COMMUNICATION

Questions to be set: 05 (All Compulsory)

Course Objectives:

- I. To introduce the concept of digital base-band data transmission through a band limited channel.
- II. To familiarize the student with concept of binary and M-ary band-pass modulation schemes.
- III. To introduce the advanced channel coding techniques to minimize the probability of error.
- IV. To acquaint with the emerging trends in digital communication field.

Pre-requisites: Digital Communication.

Course Outcomes (CO): Students should be able to

- 1. Design matched filter for detection of digital signals in the presence of white Gaussian noise.
- 2. Design waveforms to overcome ISI in band-limited channels.
- 3. Design equalization circuits to overcome the effect of channel distortion.
- 4. Understand the binary digital modulation schemes and M-ary modulation schemes.
- 5. Design turbo and LDPC codes to overcome the effect of noise in the channel.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1:	in	Detection of known signals in noise, Correlation	9	1
Introduction to	class	receiver, Matched filter receiver, Detection of signals		
Detection and		with unknown phase in noise. Minimum mean square		
Estimation		error estimator, Maximum a posteriori estimator,		
Theory		Maximum likelihood estimation, Cramer Rao bound		
		(CRB) for parameter estimation.		
	**Assignment	Numerical Problems		1
	Topics			
Module 2:	in	Digital transmission through band limited channels,	7	2
Baseband	class	Power spectrum of digitally modulated signals, Signal		
Transmission		design for band limited channels, Band limited signal		
Techniques		design for zero ISI, Band limited signal design for controlled ISI.		
	**Assignment	Numerical Problems		2
	Topics			
Module 3:	in	Probability of error in detection of digital PAM, Eye pattern,	10	3
Baseband	class	Channel equalization, Linear		
Reception		Equalizers, Adaptive equalizers, Decision feedback		
Techniques		equalizers, Fractionally spaced equalizers.		
	**Assignment	Numerical Problems		3
	Topics			
Module 4:	in class	Binary modulation schemes, Coherent and non-coherent	12	4
Modulation		detection of binary modulation schemes, Performance		
Schemes		analysis of binary modulation schemes under AWGN		
		channel, Minimum Shift Keying (MSK), Gaussian		
		Minimum Shift Keying (GMSK).		

Page 143 of 175
	**Assignment Topics	M-ary Phase Shift Keying, M-ary Quadrature Amplitude Modulation, M-ary Frequency Shift Keying, Performance analysis of M-ary modulation schemes under AWGN channel, Non-coherent detection of M- ary orthogonal signals, Carrier and timing recovery, Synchronization, Applications. Use Cases OFDM	4
Module 5: Trellis and Turbo Codes	in class **Assignment Topics	Convolutional codes, Viterbi Decoder for convolutional 10 codes, Set partitioning, Trellis codes, Turbo encoders, Turbo decoders, MAP decoder and Max-Log-Map decoder, Irregular and Asymmetric turbo codes.Regular LDPC codes, Gallager construction of LDPC codes, Gallager based decoding algorithm for LDPC codes and its analysis, LDPC threshold, Irregular LDPC codes. Application of MIMO	5

Text-Books:

 Aditya K. Jagannatham, Principles of Modern Wireless Communications Systems, 2015, 1st Edition, McGraw-Hill Education, India.

Reference Books:

1. Simon Haykin, Michael Moher, Modern Wireless Communications, 2011, 1st Edition,

Pearson Education, India.

Open Elective-4

Page 145 of 175

VT305A2

Pattern Recognition

Questions to be set: 05 (All Compulsory)

Course Objectives: In this course, students will learn the fundamentals of pattern recognition and its relevance problems. Students will be able to identify where, when and how pattern recognition can be applied. Several applications of pattern recognition will show the student how to use pattern recognition in real settings. The student will also be introduced to more recent applications of pattern recognition.

Pre-requisites: Basic knowledge of Signals and Systems, Digital Signal Processing

Course Outcomes (CO):

After completion of this course, students will be able to:

- 1. Explain and compare a variety of pattern classification, structural pattern recognition, and pattern classifier combination techniques
- 2. Understand the major approaches in statistical and syntactic pattern recognition

3. Implement simple pattern classifiers, classifier combinations, and structural pattern recognizers

- 4. Summarize, analyze, and relate research in the pattern recognition area
- 5. Apply pattern recognition techniques to real-world problems
- ** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Bayes Decision Theory	in class	Discriminant Functions and Services, the Normal Distribution, Bayesian Classification, Estimating Probability Density Functions, Nearest Neighbour Rules, Bayesian Networks	8	1
j.	**Assignment			1
Module 2: Linear and	in class	Perceptron Algorithm, Least-Squares Methods	10	2
Nonlinear Classifiers		Multilayer Perceptron's, Back Propagation Algorithm, Decision Trees - CART, C4.5, ID3, Random Forests, Boosting		
	**Assignment Topics	Combinations of Classifiers		2
Module 3: Classifier	in class	Bagging, Boosting / AdaBoost	10	3
Ensembles and Feature		Data Preprocessing, ROC Curves, Class Separability Measures, Feature Subset Selection, Bayesian		
Selection	**Assignment Topics	a communication contention		3
	. K	SMIT SMIT SMIT SMIT Page	e 146 of	f 175

Module 4:	in class	Basis Vectors, Singular Value Decomposition, 10	4
Dimensionality		Independent Component Analysis, Kernel PCA,	
Reduction and		Wavelets	
Additional			
Features &		Texture, Shape and Size Characterization, Fractals,	
Template		Features for Audio,	
Matching	**Assignment	Template Matching Using Dynamic Time Warping and	4
-	Topics	Edit Distance	
Module 5:	in class	Sequential Algorithms, Hierarchical Algorithms, 10	5
Clustering		Functional Optimization-Based Clustering, Graph	
-		Clustering, Learning Clustering, Clustering High	
		Dimensional Data, Subspace Clustering, Cluster Validity	
		Measures, Expectation Maximization, Mean Shift.	
	**Assignment		5
	Topics		

Textbooks:

1. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. Wiley-Interscience. 2nd Edition. 2001

- 2. Bishop, C. M. Pattern Recognition and Machine Learning. Springer. 2007
- 3. Marsland, S. Machine Learning: An Algorithmic Perspective. CRC Press. 2009

4. Theodoridis, S. and Koutroumbas, K. Pattern Recognition. Edition 4. Academic Press, 2008

Reference Books:

1. Russell, S. and Norvig, N. Artificial Intelligence: A Modern Approach. Prentice Hall Series in Artificial Intelligence. 2003

2. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995

3. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning. Springer. 2001

4. Koller, D. and Friedman, N. Probabilistic Graphical Models. MIT Press. 2009

VT306A2

edag \star

Nano electronic Devices and Materials

Questions to be set: 05 (All Compulsory)

Course Objectives:

- To introduce Nanotechnology to the students and to provide basic concepts of the i. Nanomaterials, Nanoelectronic Devices.
- ii. To introduce the tools used for Nanoscale Engineering.
- iii. To introduce the IC fabrication and characterization techniques.

Course Outcomes (CO):

On successful completion of this course, students will be able to:

CO1: The students should be able to understand concepts of historical perspective of Nanotechnology with reference to different devices.

CO2: The students should be able to understand crystallography concepts and quantum mechanical aspects of nanomaterials.

CO3: The students should be able to different nanoelectronics and quantum electronic devices concepts.

CO4: The students should be able to have insights and have insights of IC fabrication and characterization processes.

CO5: The students should be able to understand and know the various applications of nanoelectronics and societal impacts.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: PHYSICS APPLIED TO NANOSTRUCTURES	in class	Introduction; Historical Perspectives; Vacuum Electron Tube; Quantum Theory; Invention of Transistor; Integrated Circuit Era; Physical Size Scales; Nanomaterials Used Prior to 1990s; Prospects and Potential of Nanotechnology. Crystal Structures - Crystallography-Historical Perspectives; Size Dependence of Material Properties. Quantum Mechanical Aspects of Nanomaterials – Introduction:	8	1
	**Assignment Topics	Crystal Structures - Crystallography		1
Module 2: NANOMATERIALS AND DEVICES	in class	Bohr's Theory of Hydrogen Atom. Energy Bands in Solids – Introduction; Band Theory of Solids- Historical Perspectives; Bonding in Hydrogen Molecule. Carbon Nanoclusters - Nature of Carbon Bonds; Allotropes of Carbon; Graphene; Carbon Fullerenes- Buckyballs; Nanodiamonds; Diamond-like carbon Nanotubes. Historical Background of CNT; Physical Structure of CNT; Types of Nanotubes; Synthesis of	10	2
SMIT SMIT		CNT. Page	e 148 o	f 175

	**Assignment Topics	Properties of Nanomaterials - Why Nanomaterials Show Unique Properties; Structural Properties; Electronic Properties; Magnetic Properties; Electrical Properties; Optical Properties; Mechanical Properties. Unique Properties; Structural Properties; Electronic Properties; Magnetic Properties; Electrical Properties; Optical Properties; Mechanical Properties		2
Module 3: QUANTUM ELECTRONICS AND DEVICES	in class	Tunnel Diodes; Single Electron Devices; Quantum Well Devices; Superconducting Devices; Photonic Crystals. Physical Methods of Nanostructure Fabrication; Chemical Synthesis of Nanomaterials;	10	3
	**Assignment Topics	Chemical Synthesis of Nanomaterials		3
Module 4: METHODS OF GROWTH AND SYNTHESIS OF NANOMATERIALS	in class **Assignment	Biological Synthesis of Nanomaterials. Particle Size Determination; Surface Layer Structural Determination; Electron Microscopy; Scanning Probe Microscopy; Field Ion Microscopy; Spectroscopy; Mass Spectrometry. Spectroscopy; Mass Spectrometry	10	4
	Topics			
Module 5: APPLICATIONS OF NANOELECTRONICS AND ITS SOCIETAL IMPACT	in class	Applications of Nanotechnology – Energy; Information Technology; Displays; Computers; Defence; Nanomedicines; Consumer Goods Societal Impact of Nanotechnology Uniqueness of Nanomaterials. Implications of Nanotechnology; Health Issues; Environmental and Energy Issues; Basic Necessities-Safe Drinking Water and Food Security; Other Societal Implications	10	5
	**Assignment Topics	Implications of Nanotechnology; Health Issues; Environmental and Energy Issues; Basic Necessities-Safe Drinking Water and Food Security; Other Societal Implications.		5

Text Books:

- 1. Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4e, Tata McGraw-Hill Pvt. Ltd., 2012.
- 2. Singh R., Gupta S. P., Introduction to Nanotechnology, 1e, Oxford University Press, 2016

Reference Books:

- 1. G. W. Hanson, "Fundamentals of nanoelectronics", Pearson, 2009.
- 2. Ben Streetman and Sanjay Banerjee, Solid State Electronic Devices, 7e, Prentice-Hall, 2015

Page 149 of 175

Communication Pathways between Cloud and IoT

Questions to be set: 05 (All Compulsory)

Course Objectives: This course is designed to teach the different use cases of IoT Communication System including Fibre, Satellite, 4G-5G wireless wide area network and WiFi wireless LAN. This course contains latest case studies of Advanced Communication System where majority of the Electronics & Communication Engineering core subjects are involved and aimed for broadband and Machine to Machine communications to realize a Smart Home, Smart City and others. This definitely creates interests and motivations in students and in other way, this course will fetch a large scope of job and research opportunities in India as well abroad.

Pre-requisites: IoT Gateways, Edge computing.

Course Outcomes (CO):

CO1: The students should be able to explain the gateways and pathways connection to cloud.

CO2: The students should be able to explain uses of fibre optic communication for IoT networking.

CO3: The students should be able to explain underlying technologies for IoT communication protocols.

CO4: The students should be able to explain the role of WiFi technology in detail for IoT deployment.

CO5: The students should be able to explain the role of satellite communication technology in detail for IoT deployment.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Overview of	in class	Gateways, Pathways and their connection to Cloud towards SMARTER WORLD.	8	1
[2Hrs]	**Assignment Topics			1
Module 2: FTTH Passive Optical Networks [7 Hrs]	in class	WDM – Passive Optical Network, Geographical, Optical and Virtual Topologies: Star, Tree, Bus, Ring and Combined Components for Future Access Networks: Tunable Optical Network Unit, Fast-Tunable Laser at the Optical Line Terminal, Arrayed Waveguide Gratings, Reflective Receivers and Modulators	10	2
SMIT SMIT		Enhanced Transmission Techniques: Advanced Functionalities in PONs, Bidirectional Single Fiber Page	2 150 of	f 175

		Transmission with Colourless Optical Network Unit, Spectral Slicing, Active and Remotely-Pumped Optical Amplification.		
	**Assignment Topics	G/E-PON international standards, fiber-to-the home (FTTH), Case Study : Jio Giga Fiber system for Smart Home.		2
Module 3: Introduction to 4G/5G Heterogeneous	in class	Introduction M2M, difference between IOT and M2M, ETSI M2M Architecture, system architecture. SDN/NFV Architecture for IoT Networks Overview of 4G based LTE /LTE A communication system.	10	3
System [9 hrs]		DSP used in 5G for Enhanced Mobile Broadband (eMBB) Use Cases- Orthogonal Frequency Division Multiplexing, Generalized Frequency Division Multiplexing (GFDM), Universal Filtered OFDM, Filter Bank Multi Carrier (FBMC),		
		Antennas and Electromagnetic Waves For 5G - Smart Antenna Beamformation Techniques in 5G Enhanced Machine Type Communication Use Cases - 5G IoT Evolution, Millimeter Wave Communication for 5G IoT Applications, Implementing 5G IoT Using Cognitive Radio, Energy Harvesting and Sustainable Machine To Machine (M2M) Communication In 5G Mobile Technologies 4G-5G Hetnet with Dual Connectivity :- Case study Samsung 4G-5G Integrated Radio		
	**Assignment Topics			3
Module 4: WiFi Communication Systems [9 hrs]	in class	WiFi Evoluation wifi b/g/a/ac/ax/ay and others. Understanding current Wi-Fi network challenges: Looking ahead to the next Wi-Fi standard, Considering current and future Wi-Fi use cases. Understanding Key 802.11ax Technologies: Multi-User (MU) defined, MU-OFDMA, MU-MIMO, Spatial reuse (BSS Coloring). Looking at Other 802.11ax Enhancements and Design Considerations: Target Wake Time (TWT), 1024 QAM, New PHY Headers, Design Considerations.	10	4
	**Assignment Topics	Exploring the Aerohive 802.11ax Family: AP 630, AP650; Things You Need to Know about 802.11ax		4
Module 5: Satellite based IoT [9 Hrs]	in class	Mobile Satellite Communications: Communications satellites, Preliminary issues, History of communications satellites, Mobile satellite	10	5

Page **151** of **175**

communications systems, Orbit selection, Mobile satellite systems.

Communications with LEO Satellites : Preliminary issues in LEO satellite systems, Required number of LEO satellites and orbits, Hand-off, Inter satellite links, Spot beams, Doppler shift effect , Specific issues in LEO satellite systems, Selection of a multiple-access scheme, Traffic considerations, Modeling the LEO satellite systems

Application of CDMA in LEO Satellite Systems : Performance evaluation of analog systems, Traffic modeling, SIR: The measure of performance, Traffic assignment control, Performance of integrated voice/data systems, System considerations, Extension of the traffic model, Simulation environment, Performance measurement, Dynamic non uniform traffic concepts.

Spread-Slotted Aloha for LEO Satellite Systems : Spread-slotted Aloha, Low Earth Orbital Satellites for Personal Communication Networks, The Aloha multiple-access scheme, Spreading the Aloha packets, Employing spread-slotted Aloha in a LEO satellite system, Distribution of users, Throughput analysis, Probability of packet success

****Assignment**Case Study: LEO satellite (Example Iridium satellite)**Topics**for IoT Use cases

Text Books:

1. Josep Prat, "Next-Generation FTTH Passive Optical Networks", Springer Science, 2008.

2. Hossam Fattah, "5G LTE Narrowband Internet of Things (NB-IoT)", CRC Press, 2019.

3. David Coleman, Lawrence C. Miller, "802.11ax For Dummies", John Wiley & Sons, Inc.2018.

4. Abbas Jamalipour, "Low Earth Orbital Satellites for Personal Communication Networks", ARTECH HOUSE, INC 1998.

Reference Books:

1.<u>https://literature.cdn.keysight.com/litweb/pdf/5992-1217EN.pdf?id=2788751</u> 2.https://news.samsung.com/global/sk-telecom-and-samsung-completed-4g-5g-network-dual-connectivity-test-achieving-2-7gbps

5

EC308A2

nt of Election

6011

edan 🖈

MODERN WIRELESS COMMUNICATION SYSTEMS

Questions to be set: 05 (All Compulsory)

Course Objectives:

V. To introduce the	fundamentals	and	limitations	of	wireless	channels	imposed
on communication systems.							

- VI. To understand the principles and importance of spread spectrum and multicarrier communication in the context of wireless communication.
- VII. To identify the role of diversity and MIMO techniques in combating the effect of fading and maximizing the capacity.

VIII. To cognize the most recent trends in the broad area of wireless communication. **Pre-requisites:** Digital Communication.

Course Outcomes (CO): Students should be able to

- 6. Describe the effect of small scale and large scale fading on signal transmission.
- 7. Design and implement diversity coding techniques to overcome the effect of fading.
- 8. Apply the theory of probability and random processes in the design of baseband CDMA system.
- 9. Design the transmitter and receiver blocks of OFDM for better transmission through multipath channel.
- 10. Design and solve specific problems in advanced technologies like massive MIMO.

** not more than 20% of total topics to be allotted for assignment

Topics to be covered	Topics	Hrs	CO
in class	Propagation of EM signals in wireless channel, Reflection, Diffraction and scattering, Free space propagation model, Two ray ground reflection model, Log-distance path loss model, Log-normal shadowing, Outdoor propagation models, Longley-Rice model, Okumura model, Hata model, COST-231, Link power budget analysis. Parameters of mobile multipath channels, Types of small scale fading, Rayleigh and Rician distributions, Jakes	9	1
**Assignment Topics	Numerical Problems		1
in class	Condition for deep fading, Probability of error analysis under fading channel, Time diversity, Repetition codes, Frequency diversity, Spatial diversity techniques, Analysis of BER of multiantenna system, Diversity order.	7	2
**Assignment Topics	Numerical Problems		2
in class	Introduction to spread spectrum, Orthogonal spreading codes, Benefits of spreading (Jamming Margin, Graceful degradation, Universal frequency reuse, Multipath diversity), Multi user CDMA, Performance analysis of CDMA Page 153	10 of 175	3
	Topics to be covered in class **Assignment Topics in class **Assignment Topics in class	Topics to be coveredTopicsinPropagation of EM signals in wireless channel, Reflection, Diffraction and scattering, Free space propagation model, Two ray ground reflection model, Log-distance path loss model, Log-normal shadowing, Outdoor propagation models, Longley-Rice model, Okumura model, Hata model, COST-231, Link power budget analysis. Parameters of mobile multipath channels, Types of small scale fading, Rayleigh and Rician distributions, Jakes Doppler spectrum.**Assignment TopicsCondition for deep fading, Probability of error analysis under fading channel, Time diversity, Repetition codes, Frequency diversity, Spatial diversity techniques, Analysis of BER of multiantenna system, Diversity order.**Assignment TopicsIntroduction to spread spectrum, Orthogonal spreading codes, Benefits of spreading (Jamming Margin, Graceful degradation, Universal frequency reuse, Multipath diversity), Multi user CDMA, Performance analysis of CDMA Page 153	Topics to be coveredTopicsHrsinPropagation of EM signals in wireless channel, Propagation model, Two ray ground reflection model, Log-distance path loss model, Log-normal shadowing, Outdoor propagation models, Longley-Rice model, Okumura model, Hata model, COST-231, Link power budget analysis. Parameters of mobile multipath channels, Types of small scale fading, Rayleigh and Rician distributions, Jakes Doppler spectrum.**Assignment TopicsNumerical ProblemsinCondition for deep fading, Probability of error analysis under fading channel, Time diversity, Repetition codes, Frequency diversity, Spatial diversity techniques, Analysis of BER of multiantenna system, Diversity order.7in classIntroduction to spread spectrum, Orthogonal spreading codes, Benefits of spreading (Jamming Margin, Graceful degradation, Universal frequency reuse, Multipath diversity), Multi user CDMA, Performance analysis of CDMA Page 153 of 175

Spread Spectrum Techniques		downlink with multiple users, Performance analysis of CDMA uplink with multiple users, Asynchronous CDMA, Near far problem, Power control, CDMA receiver synchronization, Introduction to MC-CDMA.		
	**Assignment	Numerical Problems		3
	Topics			
Module 4: OFDM	in class	Introduction to multicarrier modulation, Importance of cyclic prefix, Adaptive modulation and coding techniques. OFDM issues, PAPR, Frequency and timing offset, ICI mitigation techniques, Introduction to SC-FDMA-PAPR analysis with localized and interleaved schemes	10	4
	**Assignment	Use Cases OFDM		4
	Topics			
Module 5: MIMO and Recent Trends	in class	Spatial multiplexing, Decomposition of MIMO channel, Pre- coding, Optimal MIMO power allocation, MIMO beamforming, Nonlinear MIMO receivers-V-BLAST, D- BLAST, Requirements of 5G, Drawbacks of OFDM, Introduction to Filter Bank Multicarrier System (FBMC), Massive MIMO, Millimeter wave technology, Dense network, Cognitive radio technology, Smart antennas, Multi-hop relay networks.	12	5
	**Assignment	Application of MIMO		5
	Topics			

Text-Books:

 Aditya K. Jagannatham, Principles of Modern Wireless Communications Systems, 2015, 1st Edition, McGraw-Hill Education, India.

Reference Books:

2. Simon Haykin, Michael Moher, Modern Wireless Communications, 2011, 1st Edition,

Pearson Education, India.

Open Elective-5

Page 155 of 175

VT401A2

Time Frequency Analysis

Questions to be set: 05 (All Compulsory)

Course Objectives: The student should be able to understand the requirement of Time frequency analysis and its practical applications. Students will also know different high end signal processing technology like Short Time Fourier Transform, Wavelet Transform and Wigner-Ville Distribution.

Pre-requisites: Thorough knowledge of Signal and Systems, DSP, Probability and Matrix Theory are expected.

Course Outcomes (CO):

After successful completion of this course, students will be able to:

CO	CO			STATEMENT					
004									

- CO1 Apply CTFT, DTFT and DFT for analyzing the signal and system
- **CO2** Analyze the time frequency nature of the signal
- CO3 Apply STFT for signal analysis
- CO4 Evaluate Wigner-Ville Distribution for signal analysis
- CO5 Evaluate Wavelet Transform (WT) for signal analysis

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction	in class	Review of Signals and Systems, Review of CTFT, DTF DFT and their properties.	Г, ⁸	1
	**Assignment Topics	Numerical Problems		1
Module 2: Time and Frequency Analysis techniques	in class	Introduction of duration and bandwidth, Bandwidth equation and instantaneous frequency, duration- bandwidth principle, requirement of time-frequency analysis techniques. Uncertainty principles	10	2
	**Assignment Topics	Numerical Problems		2
Module 3: Short Time	in class	Introduction to STFT, Properties of STFT, Practical aspects of STFT	10	3
Fourier Transform (STFT)	**Assignment Topics	Numerical Problems		3
Module 4: Wigner-Ville Distribution (WVD)	in class	Wigner-Ville distribution, Properties of WVD, Discrete WVD, Pseudo and Smoothed WVD, Cohen class and Smoothed WVD, Ambiguity function, Affine class.	10	4
		Solice & Communication of the second	Page 156 of	f 175

Tedal *

	**Assignment Topics	Numerical Problems		4
Module 5: Wavelet Transform (WT)	in class	Introduction to CWT, computational aspects of CWT, Scaling function, Applicationsof CWT. Introduction to DWT, Orthogonal Scaling function bases and Multiresolution Analysis (MRA), Wavelet filters and Fast DWT Algorithm, Wavelets for DWT, DWT Computation.	10	5
	**Assignment Topics	Numerical Problems		5

Text Books:

- i. Leon Cohen, "Time-Frequency Analysis", Prentice Hall, 1995.
- ii. Karlheinz Grochenig, "Foundations of Time-Frequency Analysis", SpringerScience+Business Media, LLC, 2001.

Reference Books:

i. Franz Hlawatsch, François Auger, "Time-Frequency Analysis – Concepts and Methods", Willey, 2005

VT402A2

ADVANCE VLSI DESIGN AND APPLICATION

Questions to be set: 05 (All Compulsory)

Course objectives:

Historical Perspective of VLSI, CMOS VLSI Design for Power and Speed consideration, Logical Efforts: Designing Fast CMOS Circuits; Datapath Design, Interconnect aware design, Hardware Description Languages for VLSI Design, FSM Controller/Datapath and Processor Design, VLSI Design Automation, and VLSI Design Test and Verification.

Prerequisite: Knowledge of basic VLSI circuit and technology.

Course outcomes

On completion of the course, the student will be able to:

- 1. Introduction to different VLSI design and performance parameters.
- 2. Familiarization to data path & Interconnect aware design

SMIT

- 3. Skill development inHardware Description Languages for VLSIDesign.
- 4. Introduction to processor design.
- 5. Familiar with different Automation and testing tools in VLSI design.

Module	Topics to be	Topics	Hrs	CO
	covered			
1	In Class	CMOS VLSI Designfor Power and Speed consideration	10	1
		 Historical Perspective and Future Trends in CMOS VLSI Circuit and System Design- Part-I, Historical Perspective and Future Trends in CMOS VLSI Circuit and System Design - Part II, Logical Effort - A way of Designing Fast CMOS Circuits Logical Effort - A way of Designing Fast CMOS Circuits - Part II, Logical Effort - A way of Designing Fast CMOS Circuits - Part II, Power Estimation and Control in CMOS VLSI circuits Power Estimation and Control in CMOS VLSI circuits - Part II Low Power Design Techniques- Part-I, Low Power DesignTechniques - Part II 		
	Assignment			
	Topics:			
2	In Class	Datapath Design & Interconnect aware design:	9	2
		Arithmetic Implementation Strategies for VLSI, Impact of scaling, buffer insertion and Inductive peaking, Low swing and Current mode signalling, Capacitively coupled Page 158 c	of 175	

		interconnects.		
	Assignment			
	Topics:			
3	In Class	Hardware Description Languages for VLSI Design	10	3
	Assignment	Managing concurrency and time in Hardware Description Languages. Introduction to VHDL. Basic Components in VHDL. Structural Description in VHDL. Behavioral Description in VHDL. Introduction to Verilog.		
	Assignment			
_	l opics:			
4	In Class	Controller/Datapath and Processor Design	4	4
		FSM + datapath (GCD example), Single Cycle MMIPS, Multicycle MMIPS, Multicycle MMIPS – FSM		
	Assignment			
	Topics:			
5	In Class	VLSI Design Automation, Test and Verification	15	5
		Brief Overview of Basic VLSI Design Automation Concepts, Netlist and System Partitioning, Timing Analysis in the context of Physical Design Automation, Placement algorithm, Introduction to VLSI Testing, VLSI Test Basics - I, VLSI Test Basics - II, VLSI Testing:Automatic Test Pattern Generation, VLSI Testing: Design for Test (DFT), VLSI Testing:Built-In SelfTest (BIST), VLSI Design Verification: An Introduction 40. VLSI Design Verification: Equivalence Checking, VLSI Design Verification: Equivalence/Model Checking, VLSI Design Verification: Model Checking		
	Assignment			
	Topics:			

Books

- 1. Rao R. Tummala, Fundamentals of Microsystems Packaging, McGraw Hill, NY, 2001.
- 2. William D. Brown, Advanced Electronic Packaging, IEEE Press, 1999.
- 3. Bosshart, Printed Circuit Boards Design and Technology, TataMcGraw Hill, 1988.
- 4. Blackwell (Ed), The electronic packaging handbook, CRC Press, 2000.

VT403A2

601128

edan 🖈

Artificial Intelligence and machine learning

Questions to be set: 05 (All Compulsory)

Course Objectives: To develop semantic-based and context-aware systems to acquire, organize process, share and use the knowledge embedded in multimedia content. Research will aim to maximize automation of the complete knowledge lifecycle and achieve semantic interoperability between Web resources and services.

Pre-requisites: Statistics, linear algebra, matrix, calculus, probability, programming languages and data modelling.

Course Outcomes (CO): After Completion of the Course, students will be able to:

CO1: Explain basic concept of Artificial Intelligence.CO2: Explain the search algorithm in Artificial Intelligence.CO3: Develop the concept about the logic and objectCO4: Explain the concept of agentCO5: Explain and examine different AI based applications.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to AI	in class	AI problems, foundation of AI and history of AI intelligent agents: Agents and Environments, the concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation	10	1
Module 2: Search Algorithm	in class	Searching- Searching for solutions, uniformed search strategies – Breadth first search, depth first Search. Search with partial information (Heuristic search) Hill climbing, A* ,AO* Algorithms, Problem reduction, Game Playing-Adversial search, Games, mini-max algorithm, optimal decisions in multiplayer games, Problem in Game playing, Alpha-Beta pruning, Evaluation functions	8	2
	**Assignment	Case study		2
Module 3: Introduction to logic and object	in class	Knowledge Representation First Order Predicate Logic – Prolog Programming Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering- Categories and Objects – Events – Mental Events and Mental Objects – Reasoning Systems for Categories –Reasoning with Default Information	10	3
	**Assignment Topics	Use cases		3
Module 4:	in class	Software Agents Architecture for Intelligent Agents – Agent communication–Negotiation and Bargaining –	10	4
SMIT 5		Page 16	50 of 17	75

Introduction to Agent		Argumentation among Agents – Trust and Reputation in Multi-agent systems.	
	**Assignment Topics	Case study	4
Module 5: AI Application	in class	Applications AI applications – Language Models – 10 Information Retrieval-Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware –Perception – Planning – Moving	5
	**Assignment Topics	Case study	5

Text Books:

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach, Prentice Hall, Third Edition, 2009.
- 2. Artificial Intelligence: A Modern Approach, 4th Edition, Stuart Russell, Peter Norvig University of California at Berkeley, Pearson education, 2020.

Reference Books:

 I. Bratko, —Prolog: Programming for Artificial Intelligence, Fourth Edition, Addison-Wesley Educational Publishers Inc., 2011.

VT404A2

CODING FOR MIMO COMMUNICATION

Questions to be set: 05 (All Compulsory)

Course Objectives:

- I. To cognize the most recent trends in the broad area of wireless communication.
- II. To understand the importance of MIMO for next generation networks.
- III. To identify the role of different diversity formats and spatial multiplexing in combating the effect of fading and maximizing transmission capacity.
- IV. To provide an introduction to advanced MIMO concepts like multi-user MIMO, massive MIMO and SM-MIMO for next generation communication.

Pre-requisites: Mobile Communiaction.

Course Outcomes (CO): Students should be able to

- 1. Characterize and model the MIMO wireless channel
- 2. Design and implement diversity coding techniques to overcome the effect of fading And Design optimal power allocation algorithms to maximize the system capacity
- 3. Assemble different forms of diversity to improve the error performance
- 4. Design low-complexity, linear and non-linear receivers
- 5. Evaluate the performance of concatenated codes for MIMO communication

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to MIMO and Wireless Channel	in class	Introduction, Multi antenna systems, Array gain, Diversity gain, Data pipes, Spatial multiplexing, Wireless channel, MIMO system model.	8	1
	**Assignment Topics	Numerical Problems		1
Module 2: Diversity Techniques And Capacity of MIMO	in class	Diversity, Types, Selection diversity, Scanning diversity, Maximum ratio combining, Equal gain combining, Calculation of SNR.MIMO system capacity, Channel unknown to the transmitter, Channel known to the transmitter, Water pouring principle, Capacity when channel is known to the transmitter, Deterministic channels.	12	2
	**Assignment Topics	Numerical Problems		2
Module 3: Space Time Block Coding	in class	Space Time Coded system, Design of space time trellis coded on slow fading channel, Error probability of slow fading channel, Design of space time trellis codes on fast fading channels, Error probability of fast fading channels, Comparison of STBC and STTC.	8	3
	**Assignment Topics	Numerical Problems Page 162	of 175	3

Elijedad + Guil

Bring Bucher

Module 4: Layered Space Time Codes	in class	LST transmitters: Types of encoding, Horizontal encoding, Vertical encoding, Diagonal encoding, Layered Space-Time coding design criteria, Performance analysis of HLST, VLST and DLST systems, Code design criteria, Receivers for LST systems, Iterative receivers.	12	4
	**Assignment Topics	Use Cases OFDM		4
Module 5: Concatenated Codes and Iterative	in class	Development of concatenated codes, Concatenated codes for AWGN and MIMO channels, Turbo coded modulation for MIMO channels, Concatenated space-time block coding.	8	5
Decoding	**Assignment Topics	Application of MIMO		5

Text-Books:

1. Aditya K. Jagannatham, Principles of Modern Wireless Communications Systems, 2015, 1st Edition, McGraw-Hill Education, India.

Reference Books:

- 1. B. Gershman, N. D. Sidiropoulus, Space-time Processing for MIMO Communications, 2011, 1st Edition, Wiley, NJ, USA.
- 2. A. Paulraj, R. Nabar, D Gore, Introduction to Space-Time Wireless Communications, 2013, 1st Edition, Cambridge University Press, UK.

Open Elective-6

Page 164 of 175

VT405A2

Advance Digital Signal Processing

Questions to be set: 05 (All Compulsory)

Course Objectives: The course is intended to give students a clear idea of signal processing methodologies in modern digital devices. The course is divided into two units. In unit I, the topics like Multirate signal processing and Hilbert Transform are elaborated. In unit II, cepstral analysis and Homomorphic deconvolution, power spectral estimation and optimal and adaptive filters are introduced.

Pre-requisites: Signals & Systems, Digital Signal Processing.

Course Outcomes(CO):

After successful completion of this course, students will be able to:

CO	STATEMENT
CO1	Explain the basics of signal and system, DFT, Filters
CO2	Analyze and application of Multirate DSP and Discrete Hilbert transforms

- **CO3** Examine the Cepstrum & Homomorphic Deconvolution
- CO4 Evaluate the Power Spectral Estimation
- CO5 Analysis of Parametric Method Of Power Spectrum Estimation

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction	in class	Discrete-Time Signals & Systems, Sampling, DFT, Z-transform, Filter design techniques- FIR, IIR, The basic sample rate Alteration device, Filters in sampler rate Alteration System, Multistage Design of Decimator & interpolator. The polyphase Decomposition, Arbitrary rate sampler rate converter	8	1
	**Assignment Topics	Numerical Problems		1
Module 2: Multirate DSP and Discrete Hilbert transforms	in class	Digital filter banks, Nyquist filters, two channel quadrature mirror filter bank, L channel QMF banks, Cosine modulated L- channel filter banks, Multilevel filter bank, STFT, DCT. Real & Imaginary Part, sufficiency of the FT for causal Sequences, Sufficiency Theorems for Finite length Sequences, Relationship between Magnitude & Phase, HT Relation for complex sequences.	10	2
	**Assignment Topics	Numerical Problems		2
Module 3: Cepstrum analysis &	in class	Definition of complex Cepstrum, Homomorphic Deconvolution, Properties of complex Logarithm, Alternative expression for complex cepstrum, The complex cepstrum of exponential sequences,	10	3
		Ness Communes Page 165 of 175		

Homomorphic Deconvolution		Realization of the Characteristic system, Examples of Homomorphic Filtering.		
	**Assignment Topics	Numerical Problems		3
Module 4: Introduction to Power Spectral	in class	Estimation of Spectra from Finite Duration Observations of a signal, the Periodogram, Use DFT in power Spectral Estimation, Bartlett, Welch and Blackman, Tukey methods, Comparison of performance of Non-Parametric Power Spectrum Estimation Methods	10	4
Estimation	**Assignment Topics	Numerical Problems		4
Module 5: Parametric Method Of Power Spectrum Estimation	in class	Parametric Methods for power spectrum estimation, Relationship between Auto-Correlation and Model Parameters, AR (Auto- Regressive) Process and Linear Prediction, Yule-Walker, Burg and Unconstrained Least Squares Methods, Sequential Estimation, Moving Average(MA) and ARMA Models Minimum Variance Method, Piscaranko's Harmonic Decomposition Methods, MUSIC Method.	10	5
	**Assignment Topics	Numerical Problems		5

Text Books:

1. A.V. Oppenheim and R.W. Schaffer, "Discrete-Time Signal Processing", 3/e, Pearson, 2014.

2. J.G. Proakis and D. Manolakis, "Digital Signal Processing", 4/e, Pearson, 2007.

References:

1. S.K. Mitra, "*Digital Signal Processing-A Computer based approach*", 3/e, McGraw-Hill Education (Asia), 2006.

2. Simon Haykin, "Adaptive Filter Theory", 4/e, Pearson, 2012.

3.Samuel D Stearns, "Digital Signal Processing with examples in Matlab." CRC Press.

VT406A2

ASIC Design

Questions to be set: 05 (All Compulsory)

Course objectives:

- To prepare the student to be an entry-level industrial standard ASIC or FPGA designer.
- To give the student an understanding of issues and tools related to ASIC/FPGA design and implementation.
- To give the student an understanding of basics of System on Chip and platform-based design.

Prerequisite:

Fundamentals of VLSI Design and Analog Circuits

Course outcomes

On completion of the course the student should be able to:

CO1: Demonstrate VLSI tool-flow and appreciate FPG Architecture.

CO2: Understand the issues involved in ASIC design, including technology choice, design management, tool-flow, verification, debug and test, as well as the impact of technology scaling on ASIC design.

CO3: Understand the algorithms used for ASIC construction.

CO4: Understand the basics of System on Chip, on chip communication architectures like AMBA, AXI and utilizing Platform based design.

CO5: Appreciate high performance algorithms available for ASICs IC.

Module	Topics to be	Topics	Hrs	CO
	covered			
1	In Class	Types of ASICs, VLSI Design flow, Programmable ASICs - Antifuse, SRAM, EPROM, EEPROM based ASICs. Programmable ASIC logic cells and I/O cells. Programmable interconnects.	8	1
	Assignment	Latest Version - FPGAs and CPLDs and Soft-core		1
	Topics:	processors.		
2	In Class	Trade off issues at System Level: Optimization with regard to speed, area and power, asynchronous and low power system design. ASIC physical design issues, System Partitioning, Power Dissipation, Partitioning Methods.	10	2
	Assignment			
	Topics:			
3	In Class	ASIC floor planning, Placement and Routing.	10	3
		Sics & Communic, Page	e 167 o	f 175

	Assignment			
	Topics:			
4	In Class Assignment	System-On-Chip Design - SoC Design Flow, Platform- based and IP based SoC Designs, Basic Concepts of Bus- Based Communication Architectures, On-Chip Communication Architecture Standards Low-Power SoC Design	10	4
	Topics:			
5	In Class	High performance algorithms for ASICS/ SoCs as case studies – Canonic Signed Digit Arithmetic, KCM, Distributed Arithmetic	10	5
	Assignment	High performance digital filters for sigma-delta ADC, USB		5
	Topics:	controllers, OMAP		

TEXTBOOKS:

1. M.J.S. Smith,"Application Specific Integrated Circuits", Pearson, 2003

2. H.Gerez, "Algorithms for VLSI Design Automation", John Wiley, 1999.

<u>REFERENCE BOOKS</u>:

1. J..M.Rabaey, A. Chandrakasan, and B.Nikolic, "Digital Integrated Circuit Design Perspective (2/e)", PHI2003.

2. D.A.Hodges, "AnalysisandDesignofDigitalIntegratedCircuits(3/e)", MGH2004.

3. Hoi-Jun Yoo, Kangmin LeeandJun Kyong Kim, "Low-Power NoC for High-Performance SoC Design", CRC Press,2008.

4. S. Pasricha and N. Dutt," On Chip Communication Architectures System on Chip Interconnect, Elsveir",2008.

VT407A2

Data Centre and Cloud Computing

Questions to be set: 05 (All Compulsory)

Course Objectives: In near future, all the activities of the 'Things' will be monitored and controlled from the cloud and data center. Students will be able to learn and use the knowledge from this course, in designing such computational algorithm and system.

Pre-requisites: Basic knowledge of cloud and gateways.

Course Outcomes (CO):

CO1: The students should be able to explain the cloud computing requirements and challenges.

CO2: The students should be able to explain Cloud based IoT platform design methodology.

CO3: The students should be able to explain storage hierarchy for cloud computing.

CO4: The students should be able to explain the role of Data centre cloud computing.

CO5: The students should be able to explain the basic concept of cloud server.

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to Cloud Computing	in class	Cloud Computing in a Nutshell , Roots of Cloud Computing , Layers and Types of Clouds, Desired Features of a Cloud , Cloud Infrastructure Management. Infrastructure as a Service Providers , Platform as a Service Providers , Challenges and Risks	8	1
	**Assignment Topics			1
Module 2: Migrating into a Cloud	in class	Introduction, Broad Approaches to Migrating into the Cloud, The Seven-Step Model of Migration into a Cloud, IoT platforms design methodology, IoT Physical devices and endpoints. IoT Systems: Logical design using Python, IoT physical servers and cloud offerings (Cloud computing for IoT), Conclusions	10	2
	**Assignment Topics			2
Module 3:	in class	Storage hierarchy. Hard disk drive (HDD) fundamentals, HDD evolution, storage SLA and RAID architecture,	10	3
		Page	e 169 o	f 175

Cloud storage basics		RAID techniques, RAID configurations, storage LUN, LUN capacity expansion, Storage topologies and connections, direct attached storage (DAS), storage area network (SAN), storage protocols.		
	**Assignment Topics	Applications: Massively Multiplayer Online Game Hosting on Cloud Resources Building Content Delivery Networks Using Clouds		3
Module 4: Introduction to Data Centre	in class	Basic understanding of a data center, DATA CENTER ARCHITECTURE, DATA CENTER PERFORMANCE, Scalability, Latency and throughput, data center capacity planning, data center space, how to estimate cost of space	10	4
network	**Assignment	key network terms and components, network hardware, Hub,		4
(DCN)	Topics	Switch, Bridge, Router, Gateway, Data center network topology.		
Module 5: Cloud infrastructure servers	in class	CISC, RISC, Rack-mounted, and Blade servers Cloud servers, a client/server architecture, X86 SERVER, Core, multicore, processor, and CPU, N-way servers, Multithreading and processes, Hyperthreading, server pci cards, server storage, server network, server motherboard, Rack-mounted servers and vendors,	10	5
	**Assignment	Blade servers, rack vs. Blade server, RISC server, CISC vs.		5

**Assignment	Blade servers, rack vs. Blade server, RISC server, CISC vs.
Topics	RISC, ORACLE/SUN SPARC servers, ORACLE/SUN m-
	series RISC servers, ORACLE/SUN t-series RISC servers,
	SPARC logical domain and virtual machine (VM).

Text Books:

1.Rajkumar Buyya, James Broberg, Andrzej Goscinski , "CLOUD COMPUTING Principles and Paradigms" , John Wiley & Sons, Inc, 2011.

Reference Books:

1. Caesar Wu, Rajkumar Buyya, "Cloud Data Centers and Cost Modeling", Elsevier Inc., 2015.

2. Kai Hwang, Min Chen, "Big-Data Analytics for Cloud, IoT and Cognitive Computing", John Wiley & Sons Ltd, 2017.

VT408A2

Credit: 4 (L-3, T-1, P-0)

5G MOBILE COMMUNICATION

Questions to be set: 05 (All Compulsory)

Course Objectives:

- I. To cognize the most recent trends 5G wireless communication.
- II. To understand the current research avenues in 5G domain.

Pre-requisites: Mobile Communiaction.

Course Outcomes (CO): Students should be able to

- 1. Understand 5G spectrum requirement, its channel model and use cases
- 2. Familiarize with 5G architecture options and physical layer concepts
- 3. Examine the multicarrier techniques and new waveform options for 5G communication
- 4. Illustrate the concept of network slicing and V2V Communication
- 5. Interpret the Interference and Mobility management in 5G networks

** not more than 20% of total topics to be allotted for assignment

Module	Topics to be covered	Topics	Hrs	CO
Module 1: Introduction to 5G	in class	 5G RADIO SPECTRUM: 5G spectrum landscape and requirements, Spectrum access modes and sharing scenarios, 5G spectrum technologies. 5G CHANNEL MODEL: The 5G wireless Propagation Channels: Channel modeling requirements, propagation scenarios and challenges in the 5G modeling. 5G USE CASES AND SYSTEM CONCEPT: Use cases and requirements, 5G system concept. 	12	1
	**Assignment Topics			1
Module 2: 5G Radio Interface architecture and Physical Layer	in class	 RADIO INTERFACE ARCHITECTURE: 5G architecture options, core network architecture, RAN architecture. 5G PHYSICAL LAYER: Physical channels and signals, 5G frame structure, physical layer procedures (MIMO, Power control, link adaptation, beam forming). 	10	2
	**Assignment Topics			2
Module 3: 5G Radio Access Technology	in class	Access design principles for multi-user communications, multi-carrier with filtering: a new waveform, non- orthogonal schemes for efficient multiple access	10	3
	**Assignment Topics	SMIT SMIT	of 175	3

Module 4:	in class	Network Slicing, E2E Slicing, SDN and NFV Slicing	8	4
Introduction To 5G Network Slicing:	**Assignment Topics	Use Cases OFDM		4
Module 5: Mobility And Handoff	in class	Network deployment types, Interference management in 5G, Mobility management in 5G, Dynamic network reconfiguration in 5G.	8	5
Management In 5G	**Assignment Topics			5

TEXTBOOKS:

 Afif Osseiran, Jose F Monserrat, Patrick Marsch, "5G Mobile and Wireless Communications Technology", Cambridge University Press, 2016
 Saad Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC Press, Taylor & Francis Group, First Edition, 2018
 Harri Holma, Antti Toskala, Takehiro Nakamura, "5G Technology 3GPP NEW RADIO", John Wiley & Sons First Edition, 2020 **REFERENCES:** Gordon L. Stuber, "Principles of Mobile Communication", KLUWER ACADEMIC PUBLISHERS, 2nd Edition, 2002
 Joseph C. Liberti, Theodore S. Rappaport, "Smart Antennas for Wireless Communications",

Prentice Hall PTR, 1999

3. Ying Zhang, "Network Function Virtualization Concepts and Applicability in 5G Networks", John Wiley & Sons, 2018

Choice Based Electives

The consent of Department's Internal Board of Studies (BoS) are as:

- 1. Dr. Bikash Sharma, Chairman, HoD, Dept. of ECE
- 2. Prof.(Dr.) P.C.Pradhan, Member, Dept. of ECE
- 3. Prof.(Dr.) Sourav Dhar, Member, Dept. of ECE
- 4. Dr.Hemanta Saikia, Member, Dept. of ECE
- 5. Dr. Tanushree Bose, Member, Dept. of ECE
- 6. Dr. S.N. Sur, Member, Dept. of ECE
- 7. Dr. O. P. Singh, Member, Dept. of CSE (DS)
- 8. Dr. Arun Kumar Singh, Dept. of ECE
- 9. Mr. Suman Das, Dept. of ECE (Invited member)

